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Abstract 

This paper investigates the role of genetic algorithms in determining which kind of 
specialisation emerges in decentralised simulated teams of robots controlled by evolved 
neural networks. As shown in previous works, different tasks may be better solved by 
robots specialized in a particular manner. However it was not clarified how much the 
genetic algorithm used might drive the evolution of one kind of specialisation or another: 
this is the goal of this paper. The study is conducted by evolving teams of robots that have 
to solve two different tasks that are better accomplished by using different types of 
specialisation (innate versus situated). Results suggest that the type of genetic algorithm 
employed plays a major role in determining how robots specialize and in most of the 
cases the algorithms used tend to always yield the same specialization. Only one of the 
algorithms tested led to the emergence of the most suitable kind of specialisation for each 
one of the two tasks. 
 
1 Introduction 
 

The field of collective robotics, or multi-robot systems, is receiving an increasing 
attention within autonomous robotics (for extensive reviews and taxonomies of multi-
robot systems and of the tasks that can be tackled through them, see [1], [2], [13]. The 
goal of this paper is to start to systematically study the different types of specialisations 
and the role of genetic algorithms in determining which kind of specialisation emerges in 
different environmental conditions. 

The robots of the multi-robot systems studied here have the following properties: 
(a) they have to collaborate to accomplish a common task (“cooperative tasks” are the 
most studied in the field, see [13]); (b) have a distributed control system (there are no 
“leader robots” or centralised controllers within the system, cf. [6]); (c) are guided by 
feed-forward memory-less neural-network controllers evolved with genetic algorithms 
(no learning process during the tests); (d) have no explicit communication (coordination 
has to rely upon perception, physical interactions, implicit communication, cf. [12]). 

Multi-robot systems are important for engineering purposes since they have a 
number of strengths if compared to single robots: (a) some tasks can be carried out only, 
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or with more advantages, through multi-robot systems [2]; (b) when they can be used, 
distributed controllers are simpler and more robust than centralised controllers in the case 
of failure of one element of the system; (c) systems that do not need to communicate are 
usually simpler, cheaper, and robust. 

An important issue studied within the field of cooperative collective robotics is 
“specialisation”. “To specialise” means “to concentrate on and became expert in a 
particular subject or field” (Oxford Dictionary). In adaptive multi-robot systems, 
specialisation can take place at least under two different drives: 1) the whole task of the 
team requires that the robots engage in different behaviours to be accomplished: this case 
is widely studied in cooperative collective robotics [14]; 2) the whole task of the team 
would not strictly require specialisation, but the robots still tend to assume and maintain 
specific roles (e.g., as it will be shown below, the robots that have to approach a light 
while staying in group tend to assume and maintain a specific spatial position with 
respect to each others even if this is not required by the task). This tendency is quite 
common in adaptive systems as it decreases the computation burden for each robot. 
Indeed, playing specific roles greatly diminishes the complexity of the set of input 
patterns to which the robots have to associate suitable actions (cf. [3], [6]). 

Referring to bio-inspired adaptive controllers, such as neural networks, and 
embodied multi-robot systems, it is possible to define the following types of 
specialisation (notice that they might co-exist both at the level of the single robot or at the 
level of the team): 
Body specialisation: different robots exhibit different behaviours due to their different 
sensors, actuators and bodies. 
Innate specialisation: robots behave differently on the basis of controllers that differ from 
the beginning of the accomplishment of the task. This type of specialisation can emerge 
when genetic techniques are used to evolve the controllers, and different genomes, or 
different parts of a genome, are used to encode the architecture and/or weights of the 
robots’ controllers [4]. 
Learned specialisation: the robots develop a different controller (usually the weights of 
it), and hence different behaviours, on the basis learning algorithms [15]. 
Memory specialisation: the robots exhibit different behaviours on the basis of different 
value of internal memory units ([5], learned and memory specialisation might be 
considered as one type of “ontogenetic specialisation” based on changes of “internal 
states” of the controller during the task. 
Situated specialisation ([6]): robots with identical controllers play different roles, and 
maintain them in time, on the basis of the different input patterns experienced. In this 
case, roles are usually allocated on the basis of initial random differences. 

An important topic studied in the literature [14], and closely related to 
specialisation, is the “task allocation problem”. The problem, that refers to the 
coordination mechanisms that the team uses to allocate different roles to its members, is 
particularly important for this study since, as we shall see, the emergence of the different 
types of specialisations in the multi-robot systems studied here was driven by the need to 
suitably manage the initial allocation of roles among the robots and the switching of roles 
during the execution of the task when this was advantageous. 

The controllers used in this research were evolved with genetic algorithms. The 
evolution of the controllers of multi-robots systems presents several advantages in 
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comparison to hand-designing them: 1) from an engineering perspective, evolution is a 
powerful method to design controllers when indirect and highly dynamical causal chains 
separate the controller’s properties from the desired behaviours or behavioural outcomes. 
In fact, in these cases it would be difficult to envisage such causal chains in order to 
hand-design the controllers, while evolution first generates/modifies the controllers 
randomly and then selects them a-posteriori on the basis of their overall performance 
(this difficulty, quite common in autonomous robots, cf. [3], is even more impairing in 
multi-robot systems where the behaviour of the whole group strongly depends on the 
dynamical interactions between the robots, cf. [6]); 2) from a scientific perspective, the 
evolution of robot’s controllers more likely generates insights on animals’ behaviour, 
both in general it might suggest the possible paths followed by evolution in nature, and in 
particular because it might enlighten the functioning of specific mechanisms behind 
natural evolution. 

In order to study the emergence of specialisations and how much the particular 
genetic algorithm drives evolution toward different kinds of specialisation two different 
tasks were designed: a collective light approaching task and a coordinated motion task. 
As shown below these two tasks are quite different as each one is better accomplished by 
teams exhibiting a particular kind of specialisation. For each task we evolved teams using 
different genetic algorithms: a) a genetic algorithm that uses different parts of a genome 
to encode the controllers of the robots of a team, and considered the team as the unit of 
selection (group selection); b) a genetic algorithm that creates teams by randomly 
drawing robots from a single population and that then selects for reproduction single 
robots instead of a whole team; c) a genetic algorithms that creates teams by randomly 
drawing robots from two separated population and that then operates selection at robot 
level within each population (cf. [7]). For both one-population and two-populations 
algorithms (i.e., the algorithms described in b) and c) ), two versions were used: in one 
teams are randomly created at the beginning of the generation and then fixed for the 
entire generation, in another teams are shuffled several times in a single generation. 
 In the following sections the experimental setup and the results obtained will be 
described. Section 2 will describe in detail the tasks and the experimental environment as 
well as the first two genetic algorithms. After that in Section 3 the relationship between 
tasks and specialisation will be analysed and differences between the two different setups 
will be highlighted. Finally, in Section 4 the results of evolution with different genetic 
algorithms will be presented. 
 

2 The experimental setup 
 
The research presented here has been done in a simulated environment into which highly 
realistic simulated teams of robots have been evolved. The simulations presented here 
differ both in environmental conditions the teams of robots live in and in the task they are 
requested to perform. 

2.1 The light-approaching and coordinated-motion tasks 
In the light approaching task, the robots had to approach a light target while staying close 
to each other. The environment used for this task was composed of a rectangular arena of 
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1 by 2 m surrounded by walls (Figure 1 shows the simulated version of the arena). Two 
halogen light bulbs of 230 W each were present in the arena, and were located in the 
middle of the west and east shorter walls at a height of 1.5 cm from the ground. 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
Figure 1: The arena with two robots and two light bulbs (light and grey semicircles: only one light was on 
at each time). The segment on each robot indicates the side with six sensors (see description of the robots 
reported below). The segment also indicates the direction of motion of the wheels. 

 
The coordinated motion task was carried out with an open arena without any light 

source. In this task, the robots had to move as far as possible from the initial position 
while staying close to each other. 

2.3 The robots and the neural controller 
Two simulated KheperaTM robots were used in all experiments (Figure 2, cf. [8]). The 
robots were provided with 8 infrared sensors, used to detect the presence of walls and 
other robots up to a distance of 45 mm, four light sensors, used to detect the light target 
up to 4 m (there were obtained using infrared sensors in passive mode), and four 
directional microphones, used to detect the position of other robots (these sensors, not 
present on the real robots, were simulated as described below). Each robot had two 
motors, each controlling the speed of one of the two wheels for motion, and a 
loudspeaker that continuously emitted a sound with fixed amplitude and a frequency that 
randomly varied within a given range, used to signal the own position to other robots 
(this actuator, not present on the real robots, was simulated as described below). Notice 
that microphones and loudspeakers allowed robots to detect each other at greater distance 
than infrared sensors. The groups of robots used in the experiments were composed of 
two robots with identical physical structure. 
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Figure 2: Left: The Khepera robot, whose radius measures 27.5 mm. Right: scheme of the robot. Dashed 
lines connecting a light sensor with two infrared sensors indicates that the value of that light sensor is 
obtained as the average of the activation of the two corresponding infrared sensors used in passive mode 

 To achieve a greater level of realism of the simulations, the data obtained from a 
sampling procedure carried out with the physical robot were used to compute the 
activation state of the infrared and light sensors (cf. [9]). This sampling procedure set a 
physical robot in front of walls, another robot, or halogen light, and measured the 
activation of the robot’s infrared sensors (used in a passive way in the case of light 
perception) at different angles and distances. A geometrical simulation of shadows was 
also implemented to have more realistic activation of light sensors. In order to simulate 
the effects of different activations of the motors, the change of orientation and 
displacement in space of a physical robot was sampled in correspondence to different 
commands issued to the motors themselves (the sampled data relative to the infrared 
sensors activated by the halogen light were those used in a previous research, see [6]; the 
sampled data relative to the infrared sensors activated by walls and other robots, and the 
sampled data relative to motors, were those used in [10]). 

As the physical robots were not endowed with direction microphones and 
loudspeakers, these were simulated as follows (cf. [6]). The sound amplitude A of sound 
in space was computed as: 
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where Dt is the distance of the microphone from the sound source, in millimetres, and AF 
is a scaling factor that simulates the effects of the microphone’s orientation with respect 
to the sound source. AF was computed as: 
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0.91 α=AF −  

 
where α is the convex angle, in degrees, between the direction pointed by the microphone 
and the direction of the sound source. The amplitude actually perceived by the 
microphone, PA, was computed as: 
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where A is the amplitude of the sound emitted by the other robot of the team, calculated 
using the previous formula (the simulator assumed that it was possible to filter out the 
activation of the microphone due to own sound). 

To further increase the realism of the simulation, a random value with uniform 
distribution over ±0.05% was added to all sensors at each step. 

In the light approaching task, each robot was controlled by a neural network 
(Figure 3) having 16 input neurons, each corresponding to a particular sensor of the 
robot, and a bias neuron. These neurons were directly connected with the 2 output 
neurons, whose value controlled the speed of the two wheels. 

The activation of the output neurons was mapped onto the wheels’ speed. If the 
activation value of an output neuron was between 0 and 0.5 the corresponding wheel 
rotated backward at a speed proportional to the activation value of that neuron, if it was 
0.5 between 0.45 and 0.55 the wheel was still, if it was between 0.5 and 1 the wheel 
rotated forward. 
 

 
Figure 3: The neural network controlling robots in the first simulation 
 

In the coordinated motion task, the robots used only the infrared sensors, and so 
the controllers had only 18 weights. 
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2.2 The fitness functions 
In the light approaching task, each team was tested for 4 epochs which lasted 1500 steps 
each. During each step (which lasted 100 ms) the activation of robots’ sensors was 
computed and sent to the controller, the controller calculated the activation of the output 
units, and finally this activation was used to move the robots. At the beginning of each 
epoch the robots of a team were randomly placed in the arena with random orientation 
and only the light on the left part of the arena was turned on. Then robots were left free to 
move and when the barycentre of the team reached a distance lower than 300 mm from 
the light currently on, this light was turned off and the other was turned on. Given this 
setup, the team had to change direction and move toward the turned on light to achieve a 
good performance. 
 To reward teams whose robots were able to move toward light while staying close 
to each other, a fitness function made up of two different components was designed: a 
group compactness component (GCC) measuring the ability of robots to stay close 
together, and a group speed component (GSC) measuring the ability of robots to move 
fast toward the light. The group compactness component was computed at each step t as 
follows: 
 

600
1 D=GCCt −  

 
where D was the distance between the barycentre of the two robots. If D was greater than 
600 mm, the GCC for that step was set equal to 0. The group speed component was 
computed at each step t as follows: 
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where ∆GDt was the variation of the distance between the team's barycentre and the light 
target at step t and 7 was a constant equal to the maximum possible displacement of a 
robot in one step. Given this formula, GSC was less than 0.5 if a team moved away from 
light, 0.5 if it was still, and greater of 0.5 if it moved toward the light target. 
 The total fitness of a team was computed as the average of the two components 
over its whole life: 
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where M was the total number of steps of each team's life (M=6000). 

In the coordinated motion task, each team was tested for 40 epochs which lasted 
150 steps each. At the beginning of each epoch, the robots of the team were placed in the 
arena with random orientations and a distance of 15 mm between them. At this distance 
the robot could detect each other through the infrared sensors (when the two robots were 
more than about 35 mm apart, equal to the range of the infrared sensors, they could not 
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perceive one each other). 
 The fitness function rewarded teams that were able to leave as fast as possible 
from the starting position while staying close to each other. Similarly to the light 
approaching task, the fitness was composed of two components: a group compactness 
component (GCC), measuring the ability of robots to stay close together, and a group 
speed component (GSC), measuring the ability of robots to move far away from the 
starting point. The group compactness component was computed at each step t as 
follows: 
 

300
1 D=GCCt −  

 
where D was the distance between the barycentre of the two robots. If D was greater than 
300 mm, both GCC and GSC for that step are equal to 0 (notice that this formula is more 
demanding, in terms of group compactness, with respect to the formula used for the light 
approaching task: this was needed to evolve teams of robots capable of not loosing the 
perceptual contact between them). The group speed component was computed at each 
step t as follows: 
 

7
t

t
∆GD=GSC  

 
where ∆GDt is the variation of the distance between the team’s barycentre and the 
starting point at step t and 7 is a constant equal to the maximum possible displacement of 
a robot in one step. 
 As in the light approaching task, the total fitness of a team was computed as the 
average of the two components over its whole life: 
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where M was the total number of steps of each team's life (M=6000). 
 

3 The tasks and specialisation 
 
As stated above the two tasks used here differ in what kind of specialization is more 
suitable to accomplish them. As shown in [11] the light approaching task was more 
suitable for teams that exhibit situated specialisation. In fact, to achieve high fitness 
teams should be able to change direction as quick as possible; teams that use situated 
specialization can do that changing their orientations of about 180° by rotating on the 
spot (Figure 4). It is important to note that by doing this the two robots change their role 
in the team: for example the robot at the left side with regard to the light is now at the 
right or the robot in the front part of the formation is now in the rear part. On the 
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contrary, when a team that uses innate specialisation is required to change direction 
because the light currently on is switched off and the other is switched on, its robots need 
to rearrange their position in the formation so that each one always plays the same role 
(Figure 4). To do this some time is required during which robots don't move towards the 
light target. 
 In [11] was also shown that the coordinated motion task is better accomplished by 
teams exhibiting structural specialisation. The main characteristic of this task was that 
roles need to be allocated at the beginning and are then fixed for the entire duration of the 
test. Because of the absence of an external marker (like the light in the previous task), 
teams that use situated specialisation find a lot of difficulties in allocating roles when 
both robots perceive the same input pattern. As shown in (Figure 5) they exhibit a good 
behaviour only when the starting orientations allows robots to assume different roles, e.g. 
when they have the opposite orientation with respect to the centre of the group. On the 
contrary, when the robots have symmetrical orientations with respect to the centre of the 
group, they have difficulties in allocating different roles. Instead, teams that use innate 
specialisation can easily solve the problem of the initial allocation of roles. Figure 5 
shows that, at the beginning of the task, each of the two robots quickly manages to 
assume a specific position and orientation within the group, independently of the initial 
conditions.  

 

 
Figure 4: Qualitative behaviour of robots of teams that use situate and innate specialisation in the light 
approaching task, when the light target changes position. a) and b) show the behaviour of a team that use 
situated specialisation, c) shows the behaviour of a team that uses innate specialisation. The left part of the 
figure shows positions before the change of light position (light at left), while the right part shows the 
positions after the change of direction (light at right) 
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Figure 5: Qualitative behaviour of robots of teams that use situate and innate specialisation at the 
beginning of the coordinated motion tests. a), b), c) and d) show the behaviour of an homogenous teams, 
while e), f), g) and h) show the behaviour of an heterogeneous teams. 

 
4 Influence of Genetic Algorithms on specialisation 
 
In all algorithms evolution of controllers was replicated ten times starting from different 
initial genotype populations. In each replication, evolution lasted 600 generations. In both 
tasks the best 20 genotypes (in the algorithm that operates selection at team level) or 40 
genotypes (in the algorithms that operate selection at robot level) of each generation were 
reproduced by generating five copies of each. During reproduction, each weight encoded 
in the genotype was mutated, with a probability of 5%, by adding it a random value in the 
range [-10.0, 10.0].  
 
4.1 Selection at team level 
In this algorithm the selection unit has been the whole team. The initial population 
consisted of 100 randomly generated genotypes and each genotype encoded the 
connection weights of the neural networks controlling the robots of a team. To allow, at 
least theoretically, both innate and situated specialisation to emerge, the genotype was 
made up of two parts, each corresponding to the weights of the neural network 
controlling a single robot of the team, so it encoded 68 different weights. The substantial 
difference with the clone approach, in which a single genotype is evolved and than the 
same controller is given to all robots of the team, is that now it is possible to have 
different controllers and so innate specialisation. 
 The analysis of evolved teams in both tasks show that innate specialisation 
emerges. However it is present not only in the coordinated-motion task, which “require” 
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it, but also in the light approaching task, leading to sub-optimal performances (citare 
paper workshop precedente). 
 

 Light-approaching task Coordinated-motion task 

Team selection (genotype 
made up of two parts) 

Innate Specialisation: YES Innate Specialisation: YES 

Population: single 
Team creation: at 
beginning of each epoch 

Innate Specialisation: NO  Innate Specialisation: NO  

Population: single 
Team creation: only at 
beginning of each 
generation  

Innate Specialisation: NO Innate Specialisation: YES 

Population: double 
Team creation: at 
beginning of each epoch 

Innate Specialisation: YES Innate Specialisation: YES 

Population: double 
Team creation: only at 
beginning of each 
generation  

Innate Specialisation: YES Innate Specialisation: YES 

Table 1: Algorithms influence on the emergence of innate specialisation. 

 
4.2 Selection at robot level – one population 
In this two algorithms the unit of selection has been the single robot and the fitness 
assigned to each of them depended on the fitness of the teams it has belonged to during 
its life. The population was made up of 200 randomly generated genotypes and each 
genotype encoded the connection weights of the neural network controlling a single 
robot. Depending on the task, the genotype encoded 34 or 18 weights as real numbers 
(see above). In the first algorithm 100 teams were formed at the beginning of each epoch 
by randomly coupling the robots of the population and, at the end of that epoch, the 
fitness of each robot was incremented by half the fitness of the team it belonged to (at the 
beginning of the generation all robots had fitness equal to 0). This way the same robot 
took part in several teams during its life. The second algorithm was similar to the first 
one, but new teams have been created at the beginning of each generation and then fixed 
for the entire generation. This implies that even if the selection unit is the robot, the 
elements of a team are both allowed to reproduce or both discarded. 
 The innate specialisation had difficulties to emerge especially  when the teams 
were rearranged at the beginning of each epoch (second row of Table 1). In fact if, say, 
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two different roles tended to emerge, individuals had 50% of chances to join a companion 
with the same specialisation, and, as consequence, the fitness function penalized them.  
 In order to measure the lack of innate specialisation in a population, we performed 
correlation measures among the genotypes of the population in such a way that the 
genotype of a single individual has been correlated with the genotypes of all other 
individuals. A strong correlation among all the genotypes  of a population points out the 
absence of specialised individuals. In Figure 6 we show a typical result of a correlation 
measure after a seed of the first algorithm which arose in both the performed  tasks. All 
individuals are represented in the X axis, ordered by their  correlation value with a 
randomly chosen individual, in the Y axis the same individuals are present in the same 
order, finally, in the Z axis the correlation value between the genotypes of two 
individuals is plotted. The generalized high correlation value, very close to 1,  is the main 
indicator of a population without specialized robots. A careful analysis of correlation 
values performed at the end of each generation, showed the emergence of  weakly 
correlated subpopulations, however they disappeared after a large number of generations 
in favour of a single strongly correlated population at the end of the seed. 

 
Figure 6: Typical graph of correlation in the simulation with one population and teams changed every 
epoch 

 
A very interesting situation is that of the second algorithm.  Here a single robot 

did not change team during a generation, as consequence it had the possibility to receive 
a good value of fitness when it matched a good partner. Then the emergence of innate 
specialisation was not hindered by the algorithm: basically it depended on the kind of 
task to be performed. In the light-approaching task, where the goal can be reached 
without specialisation, at the end of each seed we observed a population without 
specialised individuals. On the other hand, in the coordinated-motion task, where 
breaking initial symmetric configurations could result in a considerable advantage, the 
innate specialisation clearly emerged in every seed. These observations have been 
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corroborated by the correlation analysis made on the population. In Figure 7, the result of 
a correlation measure after a seed is shown: it is clear that two different genotypes 
characterized the whole population. By repeating the correlation measure at the end of 
each generation, we first noticed the emergence of two different subpopulations and then 
the stabilization of this configuration. 

 
Figure 7: Typical graph of correlation in the simulation with one population and teams fixed for the entire 

generation. 
 
4.3 Selection at robot level – two populations 
In the above cases, the algorithms did not foster the specialisation, but in literature we 
can find examples of algorithms which could facilitate the emergence of innate 
specialisation. In [7], the author forced the differentiation of the individuals by using 
separated populations for each role. Following this experience, we performed some 
simulations adopting the same strategy. In these new simulations, the population of 
robots had been divided in two separated sub-populations of 100 individuals each. When 
a team had to be created, the genetic algorithm randomly drew one individual from each 
population. Then, as above, we performed two series of tests: in the first, new teams were 
created at the beginning of each epoch, while in the second teams were created at the 
beginning of each generation and then remained fixed for the entire generation. As 
expected, and in accordance with the results obtained in [7], the innate specialisation 
emerged in all the tests without affecting the goodness of the fitness values. A more 
accurate analysis performed by the correlation techniques revealed a strong correlation 
among the genotypes of the same population, whereas, given two individuals belonging 
to different populations, their correlation was close to zero. 
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