800 research outputs found

    Two-spinor Formulation of First Order Gravity coupled to Dirac Fields

    Get PDF
    Two-spinor formalism for Einstein Lagrangian is developed. The gravitational field is regarded as a composite object derived from soldering forms. Our formalism is geometrically and globally well-defined and may be used in virtually any 4m-dimensional manifold with arbitrary signature as well as without any stringent topological requirement on space-time, such as parallelizability. Interactions and feedbacks between gravity and spinor fields are considered. As is well known, the Hilbert-Einstein Lagrangian is second order also when expressed in terms of soldering forms. A covariant splitting is then analysed leading to a first order Lagrangian which is recognized to play a fundamental role in the theory of conserved quantities. The splitting and thence the first order Lagrangian depend on a reference spin connection which is physically interpreted as setting the zero level for conserved quantities. A complete and detailed treatment of conserved quantities is then presented.Comment: 16 pages, Plain TE

    Higher-Derivative Boson Field Theories and Constrained Second-Order Theories

    Get PDF
    As an alternative to the covariant Ostrogradski method, we show that higher-derivative relativistic Lagrangian field theories can be reduced to second differential-order by writing them directly as covariant two-derivative theories involving Lagrange multipliers and new fields. Despite the intrinsic non-covariance of the Dirac's procedure used to deal with the constraints, the explicit Lorentz invariance is recovered at the end. We develop this new setting on the grounds of a simple scalar model and then its applications to generalized electrodynamics and higher-derivative gravity are worked out. For a wide class of field theories this method is better suited than Ostrogradski's for a generalization to 2n-derivative theoriesComment: 31 pages, Plain Te

    The influence of the cosmological expansion on local systems

    Get PDF
    Following renewed interest, the problem of whether the cosmological expansion affects the dynamics of local systems is reconsidered. The cosmological correction to the equations of motion in the locally inertial Fermi normal frame (the relevant frame for astronomical observations) is computed. The evolution equations for the cosmological perturbation of the two--body problem are solved in this frame. The effect on the orbit is insignificant as are the effects on the galactic and galactic--cluster scales.Comment: To appear in the Astrophysical Journal, Late

    Mixed valency in cerium oxide crystallographic phases: Determination of valence of the different cerium sites by the bond valence method

    Get PDF
    We have applied the bond valence method to cerium oxides to determine the oxidation states of the Ce ion at the various site symmetries of the crystals. The crystals studied include cerium dioxide and the two sesquioxides along with some selected intermediate phases which are crystallographically well characterized. Our results indicate that cerium dioxide has a mixed-valence ground state with an f-electron population on the Ce site of 0.27 while both the A- and C-sesquioxides have a nearly pure f^1 configuration. The Ce sites in most of the intermediate oxides have non-integral valences. Furthermore, many of these valences are different from the values predicted from a naive consideration of the stoichiometric valence of the compound

    Ostrogradski Formalism for Higher-Derivative Scalar Field Theories

    Get PDF
    We carry out the extension of the Ostrogradski method to relativistic field theories. Higher-derivative Lagrangians reduce to second differential-order with one explicit independent field for each degree of freedom. We consider a higher-derivative relativistic theory of a scalar field and validate a powerful order-reducing covariant procedure by a rigorous phase-space analysis. The physical and ghost fields appear explicitly. Our results strongly support the formal covariant methods used in higher-derivative gravity.Comment: 22 page

    Conformal aspects of Palatini approach in Extended Theories of Gravity

    Full text link
    The debate on the physical relevance of conformal transformations can be faced by taking the Palatini approach into account to gravitational theories. We show that conformal transformations are not only a mathematical tool to disentangle gravitational and matter degrees of freedom (passing from the Jordan frame to the Einstein frame) but they acquire a physical meaning considering the bi-metric structure of Palatini approach which allows to distinguish between spacetime structure and geodesic structure. Examples of higher-order and non-minimally coupled theories are worked out and relevant cosmological solutions in Einstein frame and Jordan frames are discussed showing that also the interpretation of cosmological observations can drastically change depending on the adopted frame

    Nucleon structure functions and light front dynamics

    Get PDF
    We present a quark-parton model to describe polarized and unpolarized nucleon structure functions. The twist-two matrix elements for the QCD evolution analysis of lepton-hadron scattering are calculated within a light-front covariant quark model. The relativistic effects in the three-body wave function are discussed for both the polarized and unpolarized cases. Predictions are given for the polarized gluon distributions as will be seen in future experiments

    A Testpart for Interdisciplinary Analyses in Micro Production Engineering

    Get PDF
    AbstractIn 2011, a round robin test was initiated within the group of CIRP Research Affiliates. The aim was to establish a platform for linking interdisciplinary research in order to share the expertise and experiences of participants all over the world. This paper introduces a testpart which has been designed to allow an analysis of different manufacturing technologies, simulation methods, machinery and metrology as well as process and production planning aspects. Current investigations are presented focusing on the machining and additive processes to produce the geometry, simulation approaches, machine analysis, and a comparison of measuring technologies. Challenges and limitations regarding the manufacturing and evaluation of the testpart features by the applied methods are discussed.Video abstrac

    Invariant conserved currents in gravity theories: diffeomorphisms and local gauge symmetries

    Full text link
    Previously, we have developed a general method to construct invariant conserved currents and charges in gravitational theories with Lagrangians that are invariant under spacetime diffeomorphisms and local Lorentz transformations. This approach is now generalized to the case when the local Lorentz group is replaced by an arbitrary local gauge group. The particular examples include the Maxwell and Yang-Mills fields coupled to gravity with Abelian and non-Abelian local internal symmetries, and the metric-affine gravity in which the local Lorentz spacetime group is extended to the local general linear group.Comment: 28 pages, Revte
    • …
    corecore