797 research outputs found
Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison
In this paper, we report a direct comparison between coupled resonator optical waveguides (CROWs) and photonic crystal waveguides (PhCWs), which have both been exploited as tunable delay lines. The two structures were fabricated on the same silicon-on-insulator (SOI) technological platform, with the same fabrication facilities and evaluated under the same signal bit-rate conditions. We compare the frequency- and time-domain response of the two structures; the physical mechanism underlying the tuning of the delay; the main limits induced by loss, dispersion, and structural disorder; and the impact of CROW and PhCW tunable delay lines on the transmission of data stream intensity and phase modulated up to 100 Gb/s. The main result of this study is that, in the considered domain of applications, CROWs and PhCWs behave much more similarly than one would expect. At data rates around 100 Gb/s, CROWs and PhCWs can be placed in competition. Lower data rates, where longer absolute delays are required and propagation loss becomes a critical issue, are the preferred domain of CROWs fabricated with large ring resonators, while at data rates in the terabit range, PhCWs remain the leading technology
Particulate Air Pollution, Clock Gene Methylation, and Stroke : Effects on Stroke Severity and Disability
Circadian rhythm disturbances have been consistently associated with the development of several diseases, particularly cardiovascular diseases (CVDs). A central clock in the brain maintains the daily rhythm in accordance with the external environment. At the molecular level, the clock is maintained by \u201cclock genes\u201d, the regulation of which is mainly due to DNA methylation, a molecular mechanism of gene expression regulation, able to react to and be reprogrammed by environmental exposure such as exposure to particulate matter (PM). In 55 patients with a diagnosis of acute ischemic stroke, we showed that PM2.5 exposure experienced before the event influenced clock genes methylation (i.e., circadian locomotor output cycles protein kaput CLOCK, period 2 PER2, cryprochrome 1 CRY1, Neuronal PAS Domain Protein 2 NPAS2), possibly modulating the patient prognosis after the event, as cryptochrome 1 CRY1 and period 1 PER1 methylation levels were associated with the Rankin score. Moreover, if PM2.5 annual average was low, CRY1/CRY2 methylation levels were positively associated with the National Institutes of Health Stroke Scale (NIHSS) score, whereas they were negatively associated if PM2.5 exposure was high. Whether epigenetic changes in clock genes need to be considered as a prognostic marker of stroke or rather a causal agent in stroke development remains to be determined. Further studies are needed to determine the role of clock gene methylation in regulating the response to and recovery after a stroke event
Exclusion of Class III malocclusion candidate loci in Brazilian families
The role played by genetic components in the etiology of the Class III phenotype, a class of dental malocclusion, is not yet understood. Regions that may be related to the development of Class III malocclusion have been suggested previously. The aim of this study was to search for genetic linkage with 6 microsatellite markers (D1S234, D4S3038, D6S1689, D7S503, D10S1483, and D19S566), near previously proposed candidate regions for Class III. We performed a two-point parametric linkage analysis for 42 affected individuals from 10 Brazilian families with a positive Class III malocclusion segregation. Analysis of our data indicated that there was no evidence for linkage of any of the 6 microsatellite markers to a Class III locus at = zero, with data supporting exclusion for 5 of the 6 markers evaluated. The present work reinforces that Class III is likely to demonstrate locus heterogeneity, and there is a dependency of the genetic background of the population in linkage studies
Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes
We report micrometric periodic assembly of live and dead magnetotactic bacteria, Magnetospirillum magneticum AMB-1, which synthesize chains of magnetic nanoparticles inside their bodies, and of superparamagnetic Fe 3 O 4 and ferromagnetic CoFe 2 O 4 nanoparticles in aqueous suspensions using periodically magnetized audio tapes. The distribution of the stray magnetic field at the surface of the tapes was determined analytically and experimentally by magneto-optic imaging. Calculations showed that the magnetic field close to the tape surface was of the order of 100 mT, and the magnetic field gradient was larger than 1 T mm -1 . Drops of aqueous solutions were deposited on the tapes, and bacteria and particles were trapped at locations where magnetic energy is minimized, as observed using conventional optical microscopy. Suspensions of M. magneticum AMB-1 treated with formaldehyde and kanamycin were studied, and patterns of trapped dead bacteria indicated that magnetic forces dominate over self-propelling forces in these experiments, in accordance with calculated values. The behavior of the different types of samples is discussed. © 2012 American Institute of Physics.Fil:Jorge, G.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ferrari, H.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Antonel, P.S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Ruiz, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Negri, R.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Pettinari, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Bekeris, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis
Transforming growth factor beta (TGFB) is a pleiotropic cytokine, known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons, but also their surrounding glial cells, and their target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed here, in order to foster new approaches to treat ALS
Migraine prevalence in visual snow with prior illicit drug use (hallucinogen persisting perception disorder) versus without
Background and purpose This study was undertaken to investigate migraine prevalence in persons with hallucinogen persisting perception disorder (HPPD) presenting as visual snow syndrome (VSS).Methods Persons with visual snow as a persisting symptom after illicit drug use (HPPD) were recruited via a Dutch consulting clinic for recreational drug use. A structured interview on (visual) perceptual symptomatology, details of drugs use, and medical and headache history was taken. As a control group, persons with visual snow who had never used illicit drugs prior to onset were included. The primary outcome was lifetime prevalence of migraine. Symptom severity was evaluated by the Visual Snow Handicap Inventory (VHI), a 25-item questionnaire.Results None of the 24 HPPD participants had migraine, whereas 20 of 37 (54.1%) controls had migraine (p < 0.001). VHI scores did not differ significantly between the two groups; in both groups, the median score was 38 of 100. In most HPPD cases (17/24, 70.9%), visual snow had started after intake of ecstasy; other psychedelic drugs reported included cannabis, psilocybin mushrooms, amphetamine, 4-fluoroamphetamine, 3-methylmethcathinone, 4-Bromo-2,5-dimethoxypenethylamine, and nitrous oxide.Conclusions Whereas none of the HPPD participants had migraine, more than half of the visual snow controls without prior use of illicit drugs had migraine. This suggests that at least partly different pathophysiological factors play a role in these disorders. Users of ecstasy and other hallucinogens should be warned of the risk of visual snow. Further studies are needed to enhance understanding of the underlying neurobiology of HPPD and VSS to enable better management of these conditions.Paroxysmal Cerebral Disorder
Choreography Rehearsal ⋆
Abstract. We propose a methodology for statically predicting the possible interaction patterns of services within a given choreography. We focus on choreographies exploiting the event notification paradigm to manage service interactions. Control Flow Analysis techniques statically approximate which events can be delivered to match the choreography constraints and how the multicast groups can be optimised to handle event notification within the service choreography.
Charged black holes in generalized dilaton-axion gravity
We study generic Einstein-Maxwell-Kalb-Ramond-dilaton actions, and derive
conditions under which they give rise to static, spherically symmetric black
hole solutions. We obtain new asymptotically flat and non-flat black hole
solutions which are in general electrically and magnetically charged. They have
positive definite and finite quasi-local masses. Existing non-rotating black
hole solutions (including those appearing in low energy string theory) are
recovered in special limits.Comment: Replaced with revised version, 33 pages, No figure
The Spectrum of Electromagnetic Jets from Kerr Black Holes and Naked Singularities in the Teukolsky Perturbation Theory
We give a new theoretical basis for examination of the presence of the Kerr
black hole (KBH) or the Kerr naked singularity (KNS) in the central engine of
different astrophysical objects around which astrophysical jets are typically
formed: X-ray binary systems, gamma ray bursts (GRBs), active galactic nuclei
(AGN), etc. Our method is based on the study of the exact solutions of the
Teukolsky master equation for electromagnetic perturbations of the Kerr metric.
By imposing original boundary conditions on the solutions so that they describe
a collimated electromagnetic outflow, we obtain the spectra of possible {\em
primary jets} of radiation, introduced here for the first time. The theoretical
spectra of primary electromagnetic jets are calculated numerically. Our main
result is a detailed description of the qualitative change of the behavior of
primary electromagnetic jet frequencies under the transition from the KBH to
the KNS, considered here as a bifurcation of the Kerr metric. We show that
quite surprisingly the novel spectra describe linearly stable primary
electromagnetic jets from both the KBH and the KNS. Numerical investigation of
the dependence of these primary jet spectra on the rotation of the Kerr metric
is presented and discussed.Comment: 18 pages, 35 figures, LaTeX file. Final version. Accepted for
publication in Astrophysics and Space Science. Amendments. Typos corrected.
Novel notion -"primary jet" is introduced. New references and comments adde
TMS-evoked EEG potentials demonstrate altered cortical excitability in migraine with aura
Migraine is associated with altered sensory processing, that may be evident as changes in cortical responsivity due to altered excitability, especially in migraine with aura. Cortical excitability can be directly assessed by combining transcranial magnetic stimulation with electroencephalography (TMS-EEG). We measured TMS evoked potential (TEP) amplitude and response consistency as these measures have been linked to cortical excitability but were not yet reported in migraine.We recorded 64-channel EEG during single-pulse TMS on the vertex interictally in 10 people with migraine with aura and 10 healthy controls matched for age, sex and resting motor threshold. On average 160 pulses around resting motor threshold were delivered through a circular coil in clockwise and counterclockwise direction. Trial-averaged TEP responses, frequency spectra and phase clustering (over the entire scalp as well as in frontal, central and occipital midline electrode clusters) were compared between groups, including comparison to sham-stimulation evoked responses.Migraine and control groups had a similar distribution of TEP waveforms over the scalp. In migraine with aura, TEP responses showed reduced amplitude around the frontal and occipital N100 peaks. For the migraine and control groups, responses over the scalp were affected by current direction for the primary motor cortex, somatosensory cortex and sensory association areas, but not for frontal, central or occipital midline clusters.This study provides evidence of altered TEP responses in-between attacks in migraine with aura. Decreased TEP responses around the N100 peak may be indicative of reduced cortical GABA-mediated inhibition and expand observations on enhanced cortical excitability from earlier migraine studies using more indirect measurements.Paroxysmal Cerebral Disorder
- …