330 research outputs found

    Equation-of-state-independent relations in neutron stars

    Full text link
    Neutron stars are extremely relativistic objects which abound in our universe and yet are poorly understood, due to the high uncertainty on how matter behaves in the extreme conditions which prevail in the stellar core. It has recently been pointed out that the moment of inertia I, the Love number lambda and the spin-induced quadrupole moment Q of an isolated neutron star, are related through functions which are practically independent of the equation of state. These surprising universal I-lambda-Q relations pave the way for a better understanding of neutron stars, most notably via gravitational-wave emission. Gravitational-wave observations will probe highly-dynamical binaries and it is important to understand whether the universality of the I-lambda-Q relations survives strong-field and finite-size effects. We apply a Post-Newtonian-Affine approach to model tidal deformations in compact binaries and show that the I-lambda relation depends on the inspiral frequency, but is insensitive to the equation of state. We provide a fit for the universal relation, which is valid up to a gravitational wave frequency of ~900 Hz and accurate to within a few percent. Our results strengthen the universality of I-lambda-Q relations, and are relevant for gravitational-wave observations with advanced ground-based interferometers. We also discuss the possibility of using the Love-compactness relation to measure the neutron-star radius with an uncertainty of about 10% or smaller from gravitational-wave observations.Comment: 5 pages, 2 figures, 2 table

    Probing Planckian corrections at the horizon scale with LISA binaries

    Full text link
    Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly-spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.Comment: v4: matches version in Phys. Rev. Lett; Editors' Suggestio

    From micro to macro and back: probing near-horizon quantum structures with gravitational waves

    Full text link
    Supermassive binaries detectable by the future space gravitational-wave interferometer LISA might allow to distinguish black holes from ultracompact horizonless objects, even when the latter are motivated by quantum-gravity considerations. We show that a measurement of very small tidal Love numbers at the level of 10%10\% accuracy (as achievable with "golden binaries") may also allow to distinguish between different models of these exotic compact objects, even when taking into account an intrinsic uncertainty in the object radius putatively due to quantum mechanics. We argue that there is no conceptual obstacle in performing these measurements, the main challenge remains the detectability of small tidal effects and an accurate waveform modelling. Our analysis uses only coordinate-independent quantities related to the proper radial distance and the total mass of the object.Comment: Minor changes to match the version published on CQ

    Gravitational radiation from collisions at the speed of light: a massless particle falling into a Schwarzschild black hole

    Get PDF
    We compute spectra, waveforms, angular distribution and total gravitational energy of the gravitiational radiation emitted during the radial infall of a massless particle into a Schwarzschild black hole. Our fully relativistic approach shows that (i) less than 50% of the total energy radiated to infinity is carried by quadrupole waves, (ii) the spectra is flat, and (iii) the zero frequency limit agrees extremely well with a prediction by Smarr. This process may be looked at as the limiting case of collisions between massive particles traveling at nearly the speed of light, by identifying the energy EE of the massless particle with m0γm_0 \gamma, m0m_0 being the mass of the test particle and γ\gamma the Lorentz boost parameter. We comment on the implications for the two black hole collision at nearly the speed of light process, where we obtain a 13.3% wave generation efficiency, and compare our results with previous results by D'Eath and Payne.Comment: 10 pages, 3 figures, published versio

    Glassy materials for Silicon-based solar panels: present and future

    Full text link
    About 2/3 of a commercial solar panel's weight is glass. This material should provide mechanical, chemical, and UV protection, contributing to the device's overall net energy production. Here we discuss some current trends in glassy materials for Silicon photovoltaics. The search for environmentally friendly glasses and new features such as anti-reflection, self-cleaning, and spectral conversion is reviewed. A conceptual model to compare UV-blocking and spectral converter materials is proposed, and the potential of these features to improve solar power production and its sustainability are discussed.Comment: 47 pages, 4 figure

    Tratado notarial e registral

    Get PDF
    Divulgação dos SUMÁRIOS das obras recentemente incorporadas ao acervo da Biblioteca Ministro Oscar Saraiva do STJ. Em respeito à Lei de Direitos Autorais, não disponibilizamos a obra na íntegra.Localização na estante: 347.961(81) K95

    A simple HPLC method for the determination of halcinonide in lipid nanoparticles: development, validation, encapsulation efficiency, and in vitro drug permeation

    Get PDF
    Halcinonide is a high-potency topical glucocorticoid used for skin inflammation treatments that presents toxic systemic effects. A simple and quick analytical method to quantify the amount of halcinonide encapsulated into lipid nanoparticles, such as polymeric lipid-core nanoparticles and solid lipid nanoparticles, was developed and validated regarding the drug's encapsulation efficiency and in vitro permeation. The development and validation of the analytical method were carried out using the high performance liquid chromatography with the UV detection at 239 nm. The validation parameters were specificity, linearity, precision and accuracy, limits of detection and quantitation, and robustness. The method presented an isocratic flow rate of 1.0 mL.min-1, a mobile phase methanol:water (85:15 v/v), and a retention time of 4.21 min. The method was validated according to international and national regulations. The halcinonide encapsulation efficiency in nanoparticles was greater than 99% and the in vitro drug permeation study showed that less than 9% of the drug permeated through the membrane, indicating a nanoparticle reservoir effect, which can reduce the halcinonide's toxic systemic effects. These studies demonstrated the applicability of the developed and validated analytical method to quantify halcinonide in lipid nanoparticles

    FE-SEM Evaluation of Dental Specimens Prepared by Different Methods for In Vitro Contamination

    Get PDF
    Objective. To evaluate through FE-SEM the cleanliness and dentinal alterations promoted by different methods of dental sample preparation. Methods. Twenty-five human single-rooted teeth were used. The teeth were cleaned and autoclaved in wet medium and randomly divided into 5 groups (n = 5), according to the preparation methods employed—control group: no solutions applied; group 1: cement removal and irrigation with 5.25% NaOCl  + 17 % EDTA for 4 minutes each; group 2: 17%  EDTA + 2.5% NaOCl (4 minutes ultrasonic bath); group 3: cement removal and 17%  EDTA + 5.25%  NaOCl + phosphate buffer solution + distilled water (10 minutes ultrasonic); group 4: 17%  EDTA + 5.25% NaOCl (3 minutes ultrasonic bath). Specimens were analyzed by field emission scanning electron microscope (FE-SEM), at 1500x magnification. Data were submitted to qualitative analysis according to a scoring system and submitted to Kruskal-Wallis test. Results. In ascending order, as to bind parameters, (i) cleanliness: control, group 2, group 3, group 5, and group 4, (ii) dentinal alterations: group 1, group 5, group 2, group 3, and group 4. Conclusion. The proposed protocol was suitable for subsequent microbiological contamination, because it showed less dentinal morphological alterations with increased removal of organic waste
    corecore