1,227 research outputs found

    Modelling and Multi-stage Design of Membrane Processes Applied to Carbon Capture in Coal-fired Power Plants

    Get PDF
    AbstractAccording to recent predictions, energy generation from coal will continue to play a key role in the next decades. The UK 2008 Climate Change Act requires a reduction of 80% of greenhouse gases emissions by 2050, and carbon capture and storage will have a key role in order to meet this target.This work focuses on post-combustion capture from coal-fired power plants based on membrane separation. Adetailed multi-stage design is presented: the developed flowsheet includes cross-flow and countercurrent-sweep stages. The cross-flow stages are based on a 2D model implemented by our research group able to predict the separation through spiral-wound permeators. Different process configurations are analysed, with the aim of reducing both energy consumption and membrane area.An economic analysis is also included: both capture and avoidance costs are evaluated. The estimated values are compared with data available in the literature for processes based on amine capture technology

    Impact of Sub-Ambient Temperature on Aging Rate and Gas Separation Properties of Polymers of Intrinsic Microporosity

    Get PDF
    Aging in polymers of intrinsic microporosity has slowed exploitation due to a decay in performance over time since densification makes them unsuitable for industrial applications. This work aimed to study the impact of the operation and storage temperature on the gas separation properties and aging rates of PIM-1 self-standing films. The permeability, diffusivity, and solubility of the tested membranes were monitored through permeation tests for pure carbon dioxide and nitrogen at a maximum upstream pressure of 1.3 bar for temperatures ranging from −20 °C to 25 °C. This study found significant benefits in the operation of glassy polymeric membranes at low temperatures, resulting in a favourable trade-off in separation performance and a reduction in the aging rate by three orders of magnitude. This brings new opportunities for the industrial application of PIMs in innovative carbon capture processes

    Hybrid Sorbent-Ultrafiltration Systems for Fluoride Removal from Water

    Get PDF
    <p>Fluoride contaminated water sources are found in many parts of the world and the consumption of such water is causing dental and skeletal fluorosis in humans, especially in developing countries. Hybrid sorbent-ultrafiltration (UF) systems are proposed for the removal of fluoride from water for the first time in this study. Laterite and bone char were selected as they are low cost, accessible sorbents in developing countries. The performances of the laterite-UF and bone char-UF systems were compared in terms of fluoride removal and membrane permeability under varying fluoride concentration, solution pH, and sorbent load. For equilibrium fluoride concentration of 1.5 mg/L, the World Health Organization guideline for safe drinking water, the sorption capacity of bone char (1.1 mg/g) was larger than that of laterite (0.40 mg/g) and this was attributed to the larger surface area of bone char. For the laterite-UF system, increase in fluoride concentration resulted in a decline in UF permeability whereas for the bone char-UF system there was no influence of fluoride concentration on membrane permeability. The optimal solution pH at which the systems are operated at maximum sorption capacity while avoiding membrane fouling was determined as pH 5-6 for the laterite-UF and pH 7 for the bone char-UF system. For both systems, the permeability declined in a similar manner as the sorbent load increased. Although both systems require further optimization, they showed to be viable defluoridation technologies.</p

    Assessment on the Application of Facilitated Transport Membranes in Cement Plants for CO2 Capture

    Get PDF
    Carbon dioxide capture from cement plant flue gas can play an important role in mitigating CO2 emission that lead to climate change. Among all the technologies evaluated, membranes have potential to be one of the most energy-efficient and low-cost CO2 capture option. In this work, a novel membrane technology, Facilitated Transport Membranes (FTMs), is assessed to further reduce energy demand and cost for CO2 capture in a cement plant. A new process that employs FTMs is simulated and applied to a real clinker production plant in Italy (Colacem, Gubbio). The process is then compared with other carbon capture technologies. Results show that the FTM technology can be competitive with other technologies despite the need of steam to operate the membrane. Despite the benefit in terms of specific emission compared to more established absorption with liquid amines process, further improvements on membrane performances are needed to gain also an economic advantage for carbon capture in the cement industry

    Comparison of the effect of topology type and linker composition of zeolitic imidazolate framework fillers on the performance of mixed matrix membranes in CO2/N2 separation

    Get PDF
    The authors acknowledge EPSRC Grant SynHiSel (EP/V047078/1). QJ acknowledges funding from the Chinese Scholarship Council CSC scheme from the Chinese Government (201908140117). The authors also acknowledge the EPSRC Strategic Equipment Resource Grant EP/R023751/1 for the use of the Jeol JSM–IT800 electron microscope at University of St Andrews.Mixed matrix membranes (MMMs) combine the high separation performance of porous materials with the processibility of polymers and so possess potential for carbon capture from CO2-containing gas streams. Zeolitic imidazolate frameworks (ZIFs) are promising candidates as molecular-sieve fillers in MMMs due to their tunability and ease of synthesis. We have compared four ZIFs, all as nanoparticles of similar sizes (ca. 400 nm), as MMM fillers, to investigate the effects of ZIF structure and chemistry on MMM performance of pure gas (CO2, N2) permeation under the same conditions. The chosen ZIFs include two that exhibit strong CO2 adsorption (hybrid ZIF-7/COK-17 and ZIF-94) and two that have higher pore volumes but weaker CO2 interactions (ZIF-8 and a hybrid ZIF-11/ZIF-71). The hybrid ZIF-7/COK-17 and ZIF-94 are structurally related to ZIF-7 (rhombohedral sod topology) and ZIF-8 (cubic sod), respectively, via partial or complete substitution of benzimidazole or 2-methylimidazole by 4,5-dichloroimidazole or 4-methyl-5-imidazolecarboxaldehyde, while the hybrid ZIF-11/ZIF-71 has the rho topology but the same composition as the ZIF-7/COK-17 hybrid. In the first part of the comparative study, MMMs based on two types of commercial polymers, Matrimid®5218 and PEBAX-MH1657, were prepared containing the ZIF-7/COK-17 hybrid and also with ZIF-94. ZIF-94 shows much better compatibility with the polymers, forming homogeneous dispersions at all loadings attempted (≤35 % wt%) whereas the hybrid shows inhomogeneity above 12 wt% in each case. At 12 wt% loading, both fillers show an increase in CO2 permeability at 1.2 bar and 293 K compared to the pure membrane (in PEBAX, this increases from 49.5 to 60 and 68 Barrer) which is the result of increased solubility compensating for decreased diffusivity, and this improvement in permeability continues to increase at the higher levels of loading possible with ZIF-94. ZIF-7/COK-17 in PEBAX show higher selectivity, achieving a calculated CO2/N2 selectivity up to 70. Further investigation of CO2 and N2 permeation on MMMs with the four ZIFs at 12 wt% in PEBAX-MH1657 showed a clear distinction between the ZIF-94 and ZIF-7/COK-17 MMMs (which show higher membrane solubilities but lower diffusivities) compared to ZIF-8 and ZIF-11/ZIF-71 MMMs. At the loading chosen, the CO2 permeability increase achieved by the four ZIFs over PEBAX-MH1657 increases in the order ZIF-11/-71, ZIF-7-COK-17 (ca. 60 Barrer) < ZIF-94 (68) < ZIF-8 (81), reflecting the complex interplay between CO2 solubility (increasing with interaction strength) and diffusivity (increasing with available cage and window size). The calculated CO2/N2 selectivity is highest for the hybrid ZIF-7/COK-17 membrane (70), which is attributed to molecular sieving effects in the rhombohedral sod structure.Peer reviewe

    A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials

    Get PDF
    There is no treatment for the myelin loss in multiple sclerosis, ultimately resulting in the axonal degeneration that leads to the progressive phase of the disease. We established a multi-tiered platform for the sequential screening of drugs that could be repurposed as remyelinating agents. We screened a library of 2,000 compounds (mainly Food and Drug Administration (FDA)-approved compounds and natural products) for cellular metabolic activity on mouse oligodendrocyte precursors (OPC), identifying 42 molecules with significant stimulating effects. We then characterized the effects of these compounds on OPC proliferation and differentiation in mouse glial cultures, and on myelination and remyelination in organotypic cultures. Three molecules, edaravone, 5-methyl-7-methoxyisoflavone and lovastatin, gave positive results in all screening tiers. We validated the results by retesting independent stocks of the compounds, analyzing their purity, and performing dose-response curves. To identify the chemical features that may be modified to enhance the compounds' activity, we tested chemical analogs and identified, for edaravone, the functional groups that may be essential for its activity. Among the selected remyelinating candidates, edaravone appears to be of strong interest, also considering that this drug has been approved as a neuroprotective agent for acute ischemic stroke and amyotrophic lateral sclerosis in Japan

    The Effect of Solution Casting Temperature and Ultrasound Treatment on PEBAX MH-1657/ZIF-8 Mixed Matrix Membranes Morphology and Performance

    Get PDF
    Approximately two-thirds of anthropogenic emissions causing global warming are from carbon dioxide. Carbon capture is essential, with membranes proving to be a low cost and energy-efficient solution to alternative technologies. In particular, mixed matrix membranes (MMMs) can have higher permeability and selectivity than pure polymer membranes. The fabrication conditions affect the formation of defects within the membranes. In this work, MMMs were created using a PEBAX MH-1657 polymer and a ZIF-8 filler. The effect of casting plate temperature, varying from −5 °C to 50 °C, and the effect of ultrasound treatment time (80–400 min) and method (filler solution only, filler and polymer combined solution only and filler solution followed by combined solution) were investigated, aiming to reduce defect formations hence improving the performance of the MMMs. SEM images and permeation tests using pure CO(2) and N(2) gas, replicating flue gas for carbon capture, were used to investigate and compare the membranes morphology and performance. The results indicated that the MMMs maintained their permeabilities and selectivities at all tested casting temperatures. However, the neat PEBAX membranes demonstrated increased phase separation of the polyamide and polyether oxide phases at higher temperatures, causing a reduction in permeability due to the higher crystallinity degree, confirmed by DSC experiment. The MMMs fabricated at low ultrasound times displayed a large amount of aggregation with large particle size causing channeling. At high ultrasound times, a well-dispersed filler with small filler diameters was observed, providing a high membrane performance. Overall, defect-free membranes were successfully fabricated, leading to improved performance, with the best membrane resulting from the longest ultrasound time reaching the Robeson bound upper limits
    • …
    corecore