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Abstract 

 

The Dual Piston Pressure Swing Adsorption (DP-PSA) system offers the potential for the full 

characterisation of adsorbent materials under a large range of experimental conditions. The analysis of 

these experiments requires an efficient tool for the simulation of the DP-PSA system to Cyclic Steady 

State (CSS). In this contribution a simulation tool is developed and applied to a mathematical model of 

the DP-PSA system. The governing set of Partial Differential Equations (PDEs) is solved with state-of-

the-art discretisation schemes, which are tailored to the character of the governing equations. PDEs 

with a strong hyperbolic character are discretised with the Finite Volume Method (FVM) with a flux-

limiting scheme; this guarantees the conservation of mass as well as correct tracking of the moving 

fronts. The mass transfer in the adsorbent materials is discretised with the orthogonal collocation on 

finite elements method which is a very efficient method for problems with steep, stationary gradients. 

The large system of Differential Algebraic Equations (DAEs) is solved with the state-of-the-art DAE 

solver SUNDIALS. Even with these sophisticated discretisation schemes, the computation times to 

reach CSS are long due to the non-linear system behaviour as well as the complex nature of the system. 

Several strategies to reduce the computation time are implemented: i) conservative node refinement: 

initial simulation with lower resolution discretisation; ii) implementation of numerical acceleration 

schemes, e.g. extrapolation method, which accelerate the convergence to CSS; iii) restart from previous 

mailto:s.brandani@ed.ac.uk
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simulation runs. Each of the acceleration schemes reduces the required simulation time by at least a 

factor of 2 and the combination of the schemes accelerates the simulation by a factor of 10. Thus the 

combined simulation tool allows the rapid simulation of the DP-PSA system. 

 

Keywords: Pressure swing adsorption; fast cycles; numerical simulation; cyclic steady state; 

acceleration; interpolation; extrapolation; ε algorithm 
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1. Introduction 

 

Adsorption based separations such as pressure swing adsorption (PSA) and vacuum swing adsorption 

(VSA) have large potential for many separation processes ranging from portable oxygen concentrators 

to CO2 capture units for commercial Carbon Capture and Storage (CCS) application in power plants 

and industry. Carbon capture research is developing rapidly due to the ambitious CO2 reduction targets 

and the large energy penalty of the first generation capture technology, i.e. liquid amine-based 

absorbents.
1
 Adsorption based processes have the potential to lower the energy penalty and to achieve 

higher productivity.2 The latter is further enhanced by the move to faster cycles and thus to smaller 

separation units. 

 

To achieve an efficient and cost-competitive adsorption based separation process requires the 

optimisation of the adsorbent materials and process conditions to the specific separation. Both aspects 

contain a large number of parameters: i) the characteristics of novel adsorbent materials, such as kinetic 

and equilibrium parameters, have to be estimated from experiments; ii) the adsorption process depends 

critically on the process conditions, such as cycle configuration, column and adsorbent sizes, 

temperature, pressure and flow rates. Hence a solely experimental approach is not feasible and it is 

important to support experiments by accurate and efficient simulation tools. These computational tools 

have to be built from models which accurately describe the underlying physical processes. Once these 

tools are validated they can be used for the parameter estimation for novel adsorbents and for the 

optimisation of the process conditions.  

 

The Dual Piston Pressure Swing Adsorption (DP-PSA) system first described by Keller and Kuo
3
 

allows independent control of pressure and flow in the adsorption column. Briefly, a DP-PSA system 

consists of two independently controlled piston-cylinder assemblies which are connected to a column 
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filled with a suitable adsorbent material. While it has been shown that this configuration increases the 

separation performance, this setup is also uniquely suited for the testing and characterisation of novel 

adsorbents under a wide variety of process conditions. Potential process conditions include different 

cycle configurations (stroke length, phase angle, cycle times) and starting pressures and composition. 

Furthermore, by enclosing the DP-PSA in an oven and running it as a closed system hundreds of 

different experiments can be run in an automatic way. The key advantages of using a DP-PSA system 

as an experimental technique to characterise adsorption columns are: 

1) The ability to change cycle times easily, enabling to test the separation efficiency at cycle times 

of a few seconds, which are needed for example in carbon capture applications; 

2) The possibility to run the system at total reflux, i.e. in a closed configuration, which enables the 

users to test the columns without consuming gases. 

Thus the interpretation of the results from these experiments requires an accurate, reliable and fast 

simulation tool.  

 

Several simulation tools for cyclic adsorption processes in general
4, 5

 and piston-driven in particular
6-8

 

have been developed in recent years. However, due to the large number of possible experiments in the 

DP-PSA system there is a need for a simulation tool which accurately describes the adsorption process 

over a wide range of experimental conditions and is strictly conservative given that the DP-PSA is run 

at total reflux. A further challenge, given the potential use of nonlinear regression algorithms to 

determine model parameters directly from the DP-PSA experiments, is the requirement for fast 

convergence to Cyclic Steady State (CSS). Like most adsorption processes the DP-PSA system is run 

in a cyclic manner and will reach CSS after a certain number of cycles; under non-isothermal 

conditions CSS is often reached only after hundreds or even thousands of cycles.
5
 The normal approach 

is to simulate one cycle after the other in the so called successive substitution method. However, the 

convergence of this method is only linear.
9
 In recent years several methods have been employed to 
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decrease the required computational time: complete discretisation of the spatial and temporal domain;
10

 

extrapolation using Newton’s method;
11

 model switching;
5
 and node refinement.

12
  

 

In this paper we are presenting the development of an efficient simulation tool for the DP-PSA system. 

An established mathematical model is extended with a pore diffusion model and the resulting PDEs are 

discretised with tailored numerical schemes. The resulting set of differential equations is solved with 

the Backward Differentiation Formula implemented in the SUNDIALS solver suite. Furthermore, 

several strategies ranging from extrapolation methods to interpolation methods are presented. The 

combination of tailored discretisation and acceleration strategies yields a fast simulation tool. 

 

 

2. Mathematical model 

 

A schematic of the DP-PSA system modelled is shown in Figure 1; this system consists of two pistons-

cylinder assemblies (henceforth called pistons) connected to either side of one column. The governing 

equations for the pistons and the column will be described separately and linked together through 

boundary conditions. The column model is implemented as an independent unit, which is the basis for a 

general cycle simulator which can then be used to predict the performance of adsorption separation 

processes. 

 

The mathematical model used here follows the model developed by Singh and Jones,
8
 Farooq et al.

7
  

and Rajendran et al.
6
 for the simulation of piston-driven adsorption processes and adds a pore diffusion 

model for the mass transfer in the adsorbent particle. Thus the mass transfer in the adsorbent particle 

can be simulated either by the Linear Driving Force (LDF) model or by pore diffusion. These two 

models form the basis for the development of a model hierarchy of increasing complexity, which can 
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be used to describe the mass transfer in the particles. For the purposes of the present contribution, as 

will be shown in the comparison with preliminary DP-PSA results, the both the LDF and macropore 

diffusion models capture accurately the behaviour of the system. The column model can be extended 

further to include several options for the description of the mass, momentum and energy balance. 

 

The mathematical model is based on the following assumptions: 

1. Axial dispersed plug flow  

2. Momentum balance: no pressure drop 

3. Energy balance: isothermal operation 

4. Mass transfer: i) Linear driving force (LDF) model or ii) pore diffusion 

5. Adsorption isotherm: i) linear or ii) Langmuir 

6. The gas concentrations in the pistons are assumed to be uniform 

7. The dead volume is distributed equally among the two cylinders 

8. No flow resistance between the pistons and column 

9. Ideal gas law 

 

The resulting models are sufficiently complex and nonlinear to allow to study the implementation of 

state-of-the-art discretisation and accelerated convergence to CSS approaches. 

 

 

2.1 Governing equations for the column 

 

The flow along the length of the column is assumed to be axial dispersed plug flow with a uniform 

concentration profile in the radial direction. From this the component mass balance along the column is 

given by 
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Assuming that the gas is ideal, the isothermal mass balance can be rewritten as  
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Summing over all components 
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where iy is the mole fraction of component i in the fluid phase, ε is the bulk void fraction and v  the 

interstitial velocity. Here and from now on the index i  goes from 1 to the number of components cN . 

The mean adsorbed concentration iQ  and the diffusive flux iJ are given by 
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where pr is the adsorbent particle radius, iD the axial dispersion coefficient, Tc the total fluid 

concentration and iy the mole fraction of component i . The mass transfer in the adsorbent particle can 

either be described by the LDF model  
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or by the pore diffusion model 
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Here *

iq is the sorbate concentration in the adsorbent particle at equilibrium, ik is the LDF mass transfer 

coefficient and e

iD is the effective pore diffusivity. The equilibrium value depends on the used 

adsorption isotherm. Here the linear or multi-component Langmuir isotherms are considered. The 

Langmuir isotherm is given by 
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where isq , is the saturation capacity and ib is the Langmuir constant.  

To close the mass balance in the column the Danckwerts boundary conditions are used. These can be 

written concisely as 
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The velocities at the column boundaries are calculated from the total mass balance in the DP-PSA 

system. Initially the column is at a uniform pressure and gas phase concentration and the adsorbent 

material is assumed to be in equilibrium with the set gas phase concentration. 

 

2.2 Governing equations for the pistons 

 

Each piston performs a sinusoidal cycle and thus the piston position can be described by the following 
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equation  
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where jS ,0  and jS ,1  are the start and end position of the piston, respectively, ct 2  is the cycle 

frequency and   the initial piston offset. From this the piston volume is calculated by 
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2.3 Pressure and flow velocity 

 

The mathematical model of the DP-PSA system assumes that the pressure is spatially uniform in the 

complete system. While this is not generally accurate, the purpose of this paper is not the development 

of the most accurate model for the DP-PSA system but the development of efficient and fast simulation 

methods. With the assumption of uniform pressure and from the overall mass balance around the two 

pistons expressions for the flow velocity at the left and right of the column can be derived 
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Replacing the velocity derivative in the overall mass balance with the average velocity gradient along 

the column length yields an expression for the pressure in the system 
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3. Numerical solution strategy for the mathematical model 

 

Due to the complexity, nonlinearity and inherent dynamic nature of the DP-PSA system the 

mathematical model introduced in the last section has to be solved numerically. The governing Partial 

Differential Equations (PDE) are discretised in space with discretisation schemes tailored to the 

properties of the equations in the fluid and solid phase, respectively. The resulting large set of 

Differential Algebraic Equations (DAE) is solved with the DAE solver suite SUNDIALS.
13

  

  

3.1 Fluid phase spatial discretisation 

 

The fluid phase is discretised with the Finite Volume Method (FVM) which is inherently conservative 

and therefore well suited for the discretisation of conservation laws. This is particularly important for 

the DP-PSA system operated at total reflux since the system is closed and any inconsistency or even 

small non-conservative error will build up and eventually cause the simulation to fail. The PDEs in the 

fluid phase are typically dominated by the convective term and thus present a strong hyperbolic 

character. Together with usually favourable isotherms this leads to the formation and propagation of 

shocks along the column. It is thus necessary to use specialised discretisation schemes which take the 

shock propagation into account. Here we are using a flux-limited FVM
14

 with the van Leer flux limiter. 

This method uses a higher order discretisation in the smooth regions of the solution and the 

unconditionally stable first order upwind method close to the shock.  
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In the FVM the spatial domain is split into a finite number N of cells and the conservation law is 

enforced on each of these volume elements; see figure 2. 

 

 

In our implementation it is assumed that the state variable is constant over the finite volume and this 

average value is stored at the centre node. More complex approximations inside the finite volumes are 

possible but the approximation used has 2
nd

 order accuracy in accordance with the accuracy of the 

evaluation of the cell boundary fluxes. The spatial derivatives, i.e. the convection and axial dispersion 

term, are approximated by cell-centred differences. Thus each mass balance PDE along the column is 

discretised into N ordinary differential equations (ODE) 
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The cell boundary fluxes are interpolated from the nodal values. While for the diffusive flux a linear 

interpolation is sufficient, the convective flux is discretised with the flux-limiting scheme. The linear 

interpolation of the diffusive flux Ji,j+1/2 at the cell boundary combined with the approximation of the 

spatial derivative in eq. 14 leads to a second-order scheme for the axial dispersion. 
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The flow direction dependence on the ratio ensures that the stencil of the ratio is symmetric with 

respect to the position 2/1j  (in contrast to other published ratios), i.e. the numerator uses upstream 

values while the denominator is centred at the cell boundary. The flux limiter ensures that the higher 

order method is used in smooth regions of the solution while the stable first order upwind method is 

used around shocks. For example, for positive flow direction and values of the limiter ji, of 0, 1 and 2 

the flux reduces to the first order upwind, second order central and first order downwind method, 

respectively. This numerical scheme has a number of benefits for the system considered. First, the 

FVM is inherently conservative so that even simulations with a few grid points conserve the mass in 

the system; this is particularly important for the closed DP-PSA system. Second, the flux-limiting 

scheme ensures that the shape of the solution along the column is qualitatively correct. 

 

3.2 Solid phase spatial discretisation 

 

In the case of the pore diffusion model in the adsorbent particles a discretisation scheme is required to 

discretise the diffusion equation. In a typical fast cyclic adsorption process the sorbate concentration 

can change considerably in parts of the adsorbent particle but usually only a small part of the particle 

actively takes part in the process.
15

 The Orthogonal Collocation on Finite Elements Method is well 

suited to this case with large but stationary gradients.
16

 The higher order of accuracy in comparison to 

most FVM allows the use of less grid points in the adsorbent particles and thus reduces the size of the 

resulting set of ODEs without compromising the accuracy of the solution. 

 

3.3 Time integration 

 

The SUNDIALS solver suite implements the variable-order, variable-step size Backwards 
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Differentiation Formulae and contains several direct and indirect linear system solvers.
13

 The implicit 

solver can handle the algebraic equations generated from the OCFEM discretisation and for the flow 

velocities. Furthermore, the system contains effects with different time scales, e.g. axial dispersion and 

mass transfer kinetics, which are dominant during different parts of the cycle. Thus the variable step 

size of the integrator ensures that the largest time step which fulfils the accuracy requirements is used. 

For a conservative spatial discretisation scheme the error in the total mass balance of the system 

depends only on the accuracy of the time integration which can be controlled by tightening the absolute 

and relative tolerances. Figure S1 in the supporting information shows that the error in the total mass 

balance is controlled by the time integration tolerances thus verifying that the numerical scheme is 

conservative.3.4 Cycle simulation 

 

The DP-PSA system like most adsorption processes is run in a cyclic manner until cyclic steady state 

(CSS) is reached. The solution at CSS is characteristic for the adsorption process; hence the system of 

equations has to be simulated to CSS for the analysis and optimisation of the adsorbent and process 

parameters, respectively. In the successive substitution approach the system is simulated analogous to 

the experimental system, i.e. the cycles are simulated one after the other and the state variables at the 

end of one cycle are used as the initial conditions for the next cycle. This approach provides 

information about the start-up and the time-evolution of the adsorption process. The CSS is reached 

once the state variables only depend on the spatial position in the system and the time relative to the 

start of the cycle. The employed condition for measuring the convergence to CSS is the root-mean 

square norm of the scaled deviations between the cycles k and k-1 
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where 
k

jx  is the vector of state variables, containing mole fractions, pressures, flow rates and sorbate 
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concentrations; atol and rtol are the absolute and relative tolerances of the time integration, 

respectively. 

 

4. Experimental validation 

 

The governing equations and numerical implementation are validated against experiments performed 

on a DP-PSA system filled with 13X zeolite adsorbent pellets. Initial single component runs with 

helium are used to determine the system volumes, i.e. the volume of the gas lines, the column volume 

and the piston volumes at the start of the piston strokes. Here it is assumed that helium is non-

adsorbing but has access to the macro- and micropores. After establishing and validating the system 

volumes the system is run with a mixture of carbon dioxide and nitrogen.  

The single-site Langmuir isotherms for CO2 and nitrogen are calculated from the dual-site Langmuir 

isotherms from Xiao et al.
17

 The kinetics for the mass transfer in the adsorbent pellets are under 

macropore diffusion control
6
 and the effective pore diffusivity is given by 
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where ipD , is the macropore diffusivity (see supporting information).
2
 In the case of the LDF model the 

LDF coefficient is calculated from the effective pore diffusivity by 

2
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k             (18) 

Figure 3 shows a comparison of the pressure profile over one cycle between the experiment and the 

simulation; the experiment conditions and parameters are given in table S1 in the supporting 

information. Both the LDF simulation and the macropore diffusion simulation (not shown) show very 

good agreement with the experimental data. The general cycle shape as well as the position and 
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magnitude of the pressure minima are simulated almost perfectly.  

 

During the experiments the pressure drop across the column and the temperature inside the column 

were measured. The pressure drop in all cases studied was below 2.5 mbar which indicates that the no 

pressure drop model employed is suitable for these test cases. The largest temperature variation over 

one cycle from the cycle mean was less than ±2K. Thus the isothermal model employed is reasonably 

accurate and possibly an improved agreement with the position of the maximum in pressure in Fig. 3 

could be obtained with a non-isothermal model. However, the mean temperature over one cycle 

increased by about 3K over the first hour of the experiment; this is most likely due to friction in the 

piston and will be investigated in a future publication. 

 

 

 

5. Acceleration schemes 

 

While the combination of the tailored discretisation schemes and the sophisticated DAE solver 

SUNDIALS generates an efficient and fast numerical scheme for the simulation of the DP-PSA system, 

the large number of different experiments combined with the potentially slow approach to CSS
5
 justify 

the investigation into schemes which accelerate the approach to CSS.  

 

The problem is approached from several angles. First, the simulation time for one cycle is reduced by 

employing node refinement similar to the work by Webley’s group.
12

 Second, the necessary number of 

cycles to reach CSS is reduced by using extrapolation methods for the calculation of the initial 

conditions and for the approach to CSS. Finally, these methods are combined. 
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5.1 Conservative node refinement 

 

The use of the FVM in the discretisation of the fluid phase enables the use of successive node 

refinement as shown by Todd et al.
12

 Briefly, the simulation is started with a small number of nodes. 

Once CSS is achieved the number of nodes is increased and the solution at the coarse grid is used to 

interpolate the starting conditions for the simulation run on the fine grid. This procedure is repeated 

(with the fine grid becoming the new coarse grid) until the variation in the solution for two successive 

grids is below a certain tolerance. Besides a reduction in the required simulation time this approach has 

the added benefit of providing a test on the required number of nodes to capture accurately the solution 

profile; depending on the process parameters the minimum number of nodes required to simulate 

accurately the solution changes. 

 

Todd et al. use cubic-spline interpolation to calculate the nodal values for the finer grid. However, this 

interpolation scheme is not necessary conservative so that the mass balance might be violated. While a 

small error in the mass balance is acceptable for a standard PSA cycle with feed inlet and product 

withdrawal, this is unacceptable for a closed system such as the DP-PSA system. To address this 

shortcoming we employed two conservative interpolation methods as shown in figure 4. The simple 

interpolation method uses the cell value of the parent cell if the new cell lies completely in the parent 

cell and a linear interpolation of the values in two neighbouring cells if the new cell crosses a cell 

boundary. In the linear interpolation method all new cell values are linearly interpolated from the 

neighbouring parent cells. While the simple interpolation ensures both local and global conservation of 

each state variable, the linear interpolation method ensures only global conservation of each state 

variable and local conservation of the total mass in the gas phase, i.e. the mole fractions sum to one and 

the pressure stays constant. From figure 4 it is immediately clear that for the linear interpolation the 

mass of each state variable relative to the corresponding portion of the parent cell is not necessarily 
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conserved. However, the mass of each state variable is conserved over each pair of neighbouring parent 

cells and over the complete system. 

 

 

5.2 Reduction of the number of cycles required to reach CSS 

 

Since the convergence of the successive substitution approach to CSS is at best linear
9
 several 

approaches which aim to increase the rate of convergence and thus reduce the number of cycles have 

been presented. Most of these methods use a Newton or quasi-Newton step to update the solution.
11, 4

 

However, while these methods increase the convergence rate they also incur a significant 

computational overhead, namely in the calculation of the Jacobian matrix for the Newton step. An 

alternative approach is the use of extrapolation algorithms. Kvamsdal and Hertzberg
18

 compared the 

performance of a quasi-Newton approach with the Aitken and Muller extrapolation algorithms. While 

both of these extrapolation algorithms accelerate the CSS convergence they are either not stable enough 

or slower than the quasi-Newton method. Here we use the more sophisticated ε algorithm.
19

 This 

algorithm was employed by Skelboe for nonlinear systems with a periodic steady-state solution.
20

 

Furthermore, he showed that the algorithm has a quadratic convergence rate under moderate conditions 

and is effective for systems with slowly decaying transients.  

 

The extrapolation algorithm is given by 

1. Set kxe 0 where kx is the state vector after the k
th

 step of the extrapolation algorithm 

2. Simulate q+2m cycles mqee 21 ,,   using successive substitution 

3. Apply the ε algorithm to mqq ee 2,,  : 

a. mrr 2,,2,1,01   
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b. mqqrer

r 2,,,0    

c.   12,,0,12,,0,
111

11 


 msmrr

s

r

s

r

s

r

s   

4. Set 0

2

1

m

kx   

 

The inverse in step 3c) is either the component-wise inverse in the scalar ε algorithm or the Samelson 

inverse   11   eeee T in the vector ε algorithm. The two parameters q and m are problem dependent and 

will be determined from a series of simulations.  

 

5.3 Restart with interpolation of the starting conditions 

 

In the case of the analysis of the DP-PSA system and for parameter estimation in general many 

different simulation runs with only slightly varying parameter sets have to be performed. Usually only 

the solution at CSS is required so that it is entirely feasible to restart the simulation with initial 

conditions interpolated or directly taken from previous simulation runs. Here we use the solution values 

at CSS as the starting conditions for the simulation run with the next parameter set. Especially in the 

analysis of the different DP-PSA runs this mimics the way in which the experiments are run.  

 

The combination of node refinement and the interpolation of the starting conditions requires a method 

to calculate the state variables on the coarse grid from the state variables on the fine grid. We calculate 

the average value of the state variables over the coarse grid and set the state variable to this value. This 

ensures that the mass is conserved, but decreases the prominence of maxima and minima.  

 

 

6. Results and discussion 
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We apply the three acceleration techniques introduced in the previous section to the DP-PSA system 

with parameters given in Table S1 in the supporting information. First the techniques are used in 

isolation to establish their individual acceleration potential and finally the three techniques are 

combined. 

 

6.1 Acceleration from conservative node refinement 

 

The DP-PSA system from section 4 is simulated to CSS with and without conservative node 

refinement. Without node refinement the system is simulated to CSS with 41 and 61 nodes. After this 

we use the two conservative interpolation schemes with two steps from 21 to 41 and subsequently to 61 

nodes. The simulation times are given in table 1. 

 

Both conservative interpolation schemes with two steps, i.e. 21 to 41 and 41 to 61 nodes, converge to 

CSS substantially faster than the simulation without node refinement and 61 nodes. The speed-up is 

about 4.5 for the simple interpolation scheme and about 5.9 for the linear interpolation scheme. 

Furthermore, both simulations with node refinement are faster than the simulation without node 

refinement with only 41 nodes. While both interpolation schemes achieve a significant speed-up, the 

linear interpolation scheme which gives a smoother interpolation shows a faster convergence to CSS.  

 

These speed-ups are slightly better than the ones achieved by Todd et al. which is most likely due to the 

differences in the adsorption systems studied. The DP-PSA system is enriching the light component in 

one piston and the heavy component in the other piston so that most of the cycles before CSS is 

reached are used to transport the two components across the column from the uniform initial 

conditions; thus the DP-PSA system is particularly suited for acceleration from conservative node 
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refinement.  

 

6.2 Acceleration from the ε algorithm 

 

The choice of the two parameters q and m, which affect the convergence properties of the ε algorithm, 

usually has to be based on a priori knowledge of the system.
20

 The rapidly and slowly decaying 

transients govern the choice of the parameters q and m, respectively. The number of cycles to CSS for 

several combinations of q and m as well as for the scalar and vector ε algorithm is given in table S2 in 

the supporting information. Before the start of the first step of the ε algorithm we simulate four cycles 

by successive substitution. During these cycles rapidly decaying transients which are only present at 

the start of the simulation disappear and the overall number of cycles to CSS is reduced.  

 

For all tested combinations of q and m the ε algorithm converges significantly faster than the 

subsequent substitution. In particular, for this test case the vector ε algorithm with q=3 and m=1 gives 

the fastest convergence: 24 cycles to CSS compared to 97 for subsequent substitution. This 

configuration is used to simulate the DP-PSA system with different parameters and the results are 

shown in table 2. In all cases tested the ε algorithm converged after a significantly lower number of 

cycles than the successive substitution simulation. A typical plot of the cyclic deviation E is shown in 

figure 5. This plot shows that the rate of convergence is higher than for successive substitution. 

 

In contrast to Newton methods extrapolation methods are independent of the numerical integration 

method and require only the solution vector. Thus they can be applied to any simulation method and 

can be combined with the other two acceleration techniques presented in this paper.  

 

Both extrapolation and Newton methods require a restart of the solver after each extrapolation step. 
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This entails re-initialising the initial conditions of the solver and setting the order of the Backwards 

Differentiation Formula to one. Thus after each extrapolation step the solver has to start with a small 

time step to compensate for the low order differentiation which reduces the solver efficiency. While this 

adds a small computational overhead for the DP-PSA system, it will not add extra overhead for general 

adsorption cycles, e.g. multi-step cycles, which usually have a solver restart at the start of the cycle 

anyway.  

 

6.3 Acceleration through restart with interpolation of the initial conditions 

 

To test the acceleration of the convergence to CSS due to the interpolation of the initial conditions we 

compare the number of cycles required to reach CSS for a simulation with uniform initial conditions 

(‘Cold start’) with a simulation started with the CSS solution for the system given in the previous 

section (‘Restart from base case’). This comparison is performed for variations in the stroke length, 

piston offset, mass transfer kinetics and equilibrium constant, which would be typical in simulations of 

either multiple experiments or numerical regression of the model parameters. Table 2 gives the number 

of cycles to CSS for the cold start and for the restart; the number of cycles to CSS is directly related to 

the simulation time required. 

 

The results given in Table 2 show that the restart from a previously reached CSS significantly reduces 

the required number of cycles to CSS. For the variations in a single parameter tested, the speed-up 

varies from 1.35 for a 20 increase in the angle offset to 3.83 for a 10% increase in stroke length. 

However, for the cases where all four parameters are either increased or decreased by 10 %/
 
 the 

speed-up is above 10. While other combinations gave only a speed-up around 2, this nevertheless 

shows that the restart from CSS conditions results in a significant reduction in the required number of 
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cycles to CSS. The magnitude of the simulated variations covers the usual step sizes in parameter 

estimation which thus can be expected to converge with about half the number of cycles. 

 

Figure 5 in which the cyclic deviation for the cold start and restart case is plotted clearly shows that the 

convergence rate in both cases is almost the same; this behaviour was observed for all tested cases. 

Thus the convergence rate, i.e. the slope of the cyclic deviation plot, depends on the parameters and not 

on the initial conditions. However, the starting point obviously depends on the initial conditions. While 

the restart from the base case provided a speed-up of 2 in most cases, the speed-up in the case where all 

4 parameters are varied simultaneously suggests that it might be possible to increase the speed-up even 

further. The CSS solution in this case is very close to the CSS solution for the base case. By analysing 

the effect of the various parameters and by then interpolating the initial conditions from several 

previous runs it might be possible to find similarly close initial conditions for arbitrary variations of the 

parameters; but this is beyond the scope of this contribution.  

 

6.4 Combination of the three acceleration methods 

 

The three acceleration methods presented in this paper can be combined to achieve even greater speed-

ups. First, the initial conditions are interpolated from the previous simulation run. Second, from these 

starting conditions the system is simulated to CSS with a low number of grid points and the vector ε 

algorithm. Finally, the number of grid points is increased by the conservative node refinement strategy 

until the desired accuracy is reached. With this strategy the required simulation time for the four cases 

where one parameter is increased by 20 %/ is reduced by a factor between 8.5 and 10.8. Thus the 

acceleration can be combined to achieve an order of magnitude decrease in the required simulation 

time and allows to use non-linear parameter regression algorithms to determine model parameters from 

the simultaneous fit of multiple DP-PSA experiments. 
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7. Conclusion 

 

In this contribution we have presented an efficient numerical simulator for DP-PSA systems. The 

mathematical model includes two models for the mass transfer kinetics, i.e. pore diffusion and LDF, 

which have a different computational complexity and are valid in different parameter regimes. The 

governing equations in the fluid and solid phase are discretised with tailored numerical schemes; thus 

reducing the computational cost while giving an accurate solution. The numerical simulations for both 

the pore diffusion and LDF model showed good agreement with experimental data.  

We have presented three methods to accelerate the convergence to CSS: i) conservative node 

refinement; ii) ε algorithm; iii) interpolation of initial conditions. In the tested cases each of these 

acceleration methods reduced the computation time to CSS by a factor of 2 or more. Finally we 

combined the three acceleration methods and achieved a reduction in the simulation time by an order of 

magnitude. Applying these acceleration methods to the DP-PSA system will allow the efficient 

estimation of the adsorbent parameters from the experiments. A hierarchy of physical models is being 

developed as a further acceleration method, i.e. simulation of diffusion mass transfer models starting 

from the CSS of the LDF model. 
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Notation 

 

bi  Langmuir constant, bar
-1

 

cT  Total fluid concentration, molm
-3 

Di  Axial dispersion coefficient of component i, m
2
s

-1
 

Di
e
  Effective pore diffusivity of component i, m

2
s

-1
 

Dp,i  Pore diffusivity of component i, m
2
s

-1
 

ej  Vector of state variables in the ε algorithm 

E  Cyclic deviation 
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Ji   Diffusive flux of component i, ms
-1 

ki  LDF coefficient of component i, ms
-1 

L  Column length, m 

Lp  Piston length, m 

M  Total number of equations 

N  Number of cells along the column 

Nc  Number of components 

P  Pressure, bar 

qi  Sorbate concentration of component i, molm
-3

 

qi
*
  Sorbate concentration at equilibrium of component i, molm

-3
 

qs,i  Saturation capacity of component i, molm
-3

 

Qi  Average sorbate concentration of component i, molm
-3

 

rp  Particle radius, m 

R  Column radius, m 

Rp  Piston radius, m 

S  Piston position, m 

S0,j  Start position of piston j, m 

S1,j  End position of piston j, m 

t  Time, s 

tc  Cycle time, s 

v  Interstitial flow velocity, ms
-1

 

VD  Dead volume, m
3
 

Vp,j  Volume of piston j, m
3
 

xj  Vector of state variables 

yi  Mole fraction of component i 
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yi,pj  Mole fraction of component i in piston j 

z  Axial distance, m 

 

Greek letters 

 

ε  Bed void fraction 

εp  Pore void fraction 

θi,j  Ratio of the solution vector for component i at node j 

σi,j  Flux limiter for component i at node j 

φ  Piston offset 

ω  Angular frequency 
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Figures 

 

 

a)  

 

b) 

 

Figure 1: a) DP-PSA system  b) Schematic of the system 



 30 

 

 

 

Figure 2: Schematic of the node based finite volume method. The dashed lines in the graph show the 

average value over each cell. The bottom of the figure shows the support of the flux limiter through the 

cell boundary j+1/2 for positive and negative flow. 
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Figure 3: Comparison between the experiment and the LDF simulation of a CO2 /N2 run for a 10 s 

cycle on 13X in the DP-PSA system for the conditions given in table 1.  
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Figure 4: Schematic of the two conservative interpolation schemes. 
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Figure 5: Comparison of convergence to CSS for subsequent substitution, vector ε algorithm and 

restart from the base case. The stroke length in piston 1 is increased by 20% in relation to the base case. 
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Tables: 

 

Table 1: Simulation time for the DP-PSA system with and without conservative node refinement. The 

simulation time is given as a percentage of the longest simulation time, i.e. the simulation with N=61 

and no node refinement. 

 

 N=21 N=41 N=61 Total 

No node refinement   100% 100% 

No node refinement  35.9%  35.9% 

Simple node refinement 8.1% 6.5% 7.2% 21.8% 

Linear node refinement 8.3% 4.1% 4.6% 17.0% 
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 Table 2: Comparison of the number of cycles required to reach CSS for successive substitution with 

cold start, the vector ε algorithm and restart from the base case. 

Case Cold start Vector ε algorithm, 

q=3, m=1 

Restart from  

base case 

(S1,1 – S0,1) + 10% 92 39 24 

(S1,1 – S0,1) + 20% 88 34 36 

(S1,1 – S0,1) – 10% 103 34 33 

Φ1 + 10
º 

88 34 51 

Φ1 + 20
º 

81 29 59 

Φ1 – 10
º 

108 44 63 

k1 + 10% 100 34 49 

k1 + 20% 103 34 62 

k1 – 10% 95 39 43 

b1 + 10% 108 44 52 

b1 + 20% 119 39 70 

b1 – 10% 87 39 41 

All + 10 %/
 º
 95 39 9 

All - 10 %/
 º
 100 34 8 

 


