1,580 research outputs found

    The Black Hole Mass of Abell 1836-BCG and Abell 3565-BCG

    Full text link
    Two brightest cluster galaxies (BCGs), namely Abell 1836-BCG and Abell 3565-BCG, were observed with the Advanced Camera for Surveys (ACS) and the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope. By modeling the available photometric and kinematic data, it resulted that the mass of Abell 1836-BCG and Abell 3565-BCG are M_bh=4.8(+0.8,-0.7)x10^9 M_sun and M_bh=1.3(+0.3,-0.4)x10^9 M_sun at 1 sigma confidence level, respectively.Comment: 4 pages, 3 figures, Mem SAIt in press, Proceedings of the 51st Annual Meeting of the Italian Astronomical Society, Florence, April 17-20, 200

    The Radio Jets and Accretion Disk in NGC 4261

    Get PDF
    The structure of AGN accretion disks on sub-parsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. We present new VLBA observations of the nearby FR-I radio galaxy NGC 4261 at 22 and 43 GHz, and combine these with previous VLBA observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. Assuming the disk is geometrically and optically thin and composed of a uniform 10^4 K plasma, the average electron density in the inner 0.1 pc is 10^3 - 10^8 cm^-3. Equating thermal gas pressure and magnetic field strength gives a disk magnetic field of 10^-4 - 10^-2 Gauss at 0.1 pc. The jet opening angle is between 0.3 and 20 degrees during the first 0.2 pc of the jet, and must be less than 5 degrees during the first 0.8 pc. We include an appendix containing expressions for a simple, optically thin, gas pressure dominated accretion disk model which may be applicable to other galaxies in addition to NGC 4261.Comment: 15 pages plus 6 postscript figures, accepted by Ap

    Induced Nested Galactic Bars Inside Assembling Dark Matter Halos

    Full text link
    We investigate the formation and evolution of nested bar systems in disk galaxies in a cosmological setting by following the development of an isolated dark matter (DM) and baryon density perturbation. The disks form within the assembling triaxial DM halos and the feedback from the stellar evolution is accounted for in terms of supernovae and OB stellar winds. Focusing on a representative model, we show the formation of an oval disk and of a first generation of nested bars with characteristic sub-kpc and a few kpc sizes. The system evolves through successive dynamical couplings and decouplings, forcing the gas inwards and settles in a state of resonant coupling. The inflow rate can support a broad range of activity within the central kpc, from quasar- to Seyfert-types, supplemented by a vigorous star formation as a by-product. The initial bar formation is triggered in response to the tidal torques from the triaxial DM halo, which acts as a finite perturbation. This first generation of bars does not survive for more than 4--5 Gyr: by that time the secondary bar has totally dissolved, while the primary one has very substantially weakened, reduced to a fat oval. This evolution is largely due to chaos introduced by the interaction of the multiple non-axisymmetric components.Comment: 4 pages, 4 figures, 1 mpeg animation. To be published by the Astrophysical Journal Letters. The animation can be found at http://www.pa.uky.edu/~shlosman/research/galdyn/movies.html Replaced with an updated version (small text corrections

    A revised Cepheid distance to NGC 4258 and a test of the distance scale

    Get PDF
    In a previous paper (Maoz et al. 1999), we reported a Hubble Space Telescope (HST) Cepheid distance to the galaxy NGC 4258 obtained using the calibrations and methods then standard for the Key Project on the Extragalactic Distance Scale. Here, we reevaluate the Cepheid distance using the revised Key Project procedures described in Freedman et al. (2001). These revisions alter the zero points and slopes of the Cepheid Period-Luminosity (P-L) relations derived at the Large Magellanic Cloud (LMC), the calibration of the HST WFPC2 camera, and the treatment of metallicity differences. We also provide herein full information on the Cepheids described in Maoz et al. 1999. Using the refined Key Project techniques and calibrations, we determine the distance modulus of NGC 4258 to be 29.47 +/- 0.09 mag (unique to this determination) +/- 0.15 mag (systematic uncertainties in Key Project distances), corresponding to a metric distance of 7.8 +/- 0.3 +/- 0.5 Mpc and 1.2 sigma from the maser distance of 7.2 +/- 0.5 Mpc. We also test the alternative Cepheid P-L relations of Feast (1999), which yield more discrepant results. Additionally, we place weak limits upon the distance to the LMC and upon the effect of metallicity in Cepheid distance determinations.Comment: 26 pages in emulateapj5 format, including 6 figures and 5 tables. Accepted for publication in the Astrophysical Journa

    Comparing and calibrating black hole mass estimators for distant active galactic nuclei

    Full text link
    Black hole mass is a fundamental property of active galactic nuclei (AGNs). In the distant universe, black hole mass is commonly estimated using the MgII, Hbeta, or Halpha emission line widths and the optical/UV continuum or line luminosities, as proxies for the characteristic velocity and size of the broad-line region. Although they all have a common calibration in the local universe, a number of different recipes are currently used in the literature. It is important to verify the relative accuracy and consistency of the recipes, as systematic changes could mimic evolutionary trends when comparing various samples. At z=0.36, all three lines can be observed at optical wavelengths, providing a unique opportunity to compare different empirical recipes. We use spectra from the Keck Telescope and the Sloan Digital Sky Survey to compare black hole mass estimators for a sample of nineteen AGNs at this redshift. We compare popular recipes available from the literature, finding that mass estimates can differ up to 0.38+-0.05 dex in the mean (or 0.13+-0.05 dex, if the same virial coefficient is adopted). Finally, we provide a set of 30 internally self consistent recipes for determining black hole mass from a variety of observables. The intrinsic scatter between cross-calibrated recipes is in the range 0.1-0.3 dex. This should be considered as a lower limit to the uncertainty of the black hole mass estimators.Comment: ApJ in press, 11 pages, 10 figure

    From Supermassive Black Holes to Dwarf Elliptical Nuclei: a Mass Continuum

    Full text link
    Considerable evidence suggests that supermassive black holes reside at the centers of massive galactic bulges. At a lower galactic mass range, many dwarf galaxies contain extremely compact nuclei that structurally resemble massive globular clusters. We show that both these types of central massive objects (CMO's) define a single unbroken relation between CMO mass and the luminosity of their host galaxy spheroid. Equivalently, M_CMO is directly proportional to the host spheroid mass over 4 orders of magnitude. We note that this result has been simultaneously and independently identified by Cote et al. (2006), see also Ferrarese et al. (2006). We therefore suggest that the dE,N nuclei may be the low-mass analogs of supermassive black holes, and that these two types of CMO's may have both developed starting from similar initial formation processes. The overlap mass interval between the two types of CMO's is small, and suggests that for M_CMO > 10^7 M_sun, the formation of a black hole was strongly favored, perhaps because the initial gas infall to the center was too rapid and violent for star formation to occur efficiently.Comment: 4 pages, 2 figures, submitted to ApJ

    Multi-segments kinematic model of the human spine during gait

    Get PDF
    The complex biomechanical structure of the human spine requires a deep investigation to properly describe its physiological function and its kinematic contribution during motion. The computational approach allows the segmentation of the human spine into several rigid bodies connected by 3D joints. Despite the numerous solutions proposed by previous literature studies based on both inertial and stereophotogrammetric systems, the modelling of the human spine is characterized by some limitations such as the lack of standardization. Accordingly, the present preliminary study focused on the development of a multi-segments kinematic model of the human spine and its validation during gait trials. Three-dimensional spinal angular patterns and ranges of motion of one healthy young subject were considered as outcomes of interest. They were obtained by applying the YXZ Euler angles convention to the custom model. First, results were compared with those of the standard Plug-in-Gait full-body model, which segments the human spine into pelvis and trunk segments. Then, outcomes of the multi-segments model were compared with those obtained using the Tilt-Twist method. Overall, results stressed the importance of the spine segmentation, the major angular contributions of spinal regions during gait (Medium-Lumbar segments for lateral bending and flexion-extension, Thoracic-Medium segments for axial rotation), and the reliability of the proposed custom model (differences between Euler angles method and Tilt-Twist method lower than 0.5° in most cases). Future analysis on a larger healthy population and in the clinical context might be implemented to optimize, standardize and validate the proposed human spine model

    The Host Galaxy and Central Engine of the Dwarf AGN POX 52

    Full text link
    We present new multi-wavelength observations of the dwarf Seyfert 1 galaxy POX 52 in order to investigate the properties of the host galaxy and the active nucleus, and to examine the mass of its black hole, previously estimated to be ~ 10^5 M_sun. Hubble Space Telescope ACS/HRC images show that the host galaxy has a dwarf elliptical morphology (M_I = -18.4 mag, Sersic index n = 4.3) with no detected disk component or spiral structure, confirming previous results from ground-based imaging. X-ray observations from both Chandra and XMM show strong (factor of 2) variability over timescales as short as 500 s, as well as a dramatic decrease in the absorbing column density over a 9 month period. We attribute this change to a partial covering absorber, with a 94% covering fraction and N_H = 58^{+8.4}_{-9.2} * 10^21 cm^-2, that moved out of the line of sight in between the XMM and Chandra observations. Combining these data with observations from the VLA, Spitzer, and archival data from 2MASS and GALEX, we examine the spectral energy distribution (SED) of the active nucleus. Its shape is broadly similar to typical radio-quiet quasar SEDs, despite the very low bolometric luminosity of L_bol = 1.3 * 10^43 ergs/s. Finally, we compare black hole mass estimators including methods based on X-ray variability, and optical scaling relations using the broad H-beta line width and AGN continuum luminosity, finding a range of black hole mass from all methods to be M_bh = (2.2-4.2) * 10^5 M_sun, with an Eddington ratio of L_bol/L_edd = 0.2-0.5.Comment: 19 pages, 16 figures, accepted for publication in Ap

    Radial stability of a family of anisotropic Hernquist models with and without a supermassive black hole

    Get PDF
    We present a method to investigate the radial stability of a spherical anisotropic system that hosts a central supermassive black hole (SBH). Such systems have never been tested before for stability, although high anisotropies have been considered in the dynamical models that were used to estimate the masses of the central putative supermassive black holes. A family of analytical anisotropic spherical Hernquist models with and without a black hole were investigated by means of N-body simulations. A clear trend emerges that the supermassive black hole has a significant effect on the overall stability of the system, i.e. an SBH with a mass of a few percent of the total mass of the galaxy can prevent or reduce the bar instabilities in anisotropic systems. Its mass not only determines the strength of the instability reduction, but also the time in which this occurs. These effects are most significant for models with strong radial anisotropies. Furthermore, our analysis shows that unstable systems with similar SBH but with different anisotropy radii evolve differently: highly radial systems become oblate, while more isotropic models tend to form into prolate structures. In addition to this study, we also present a Monte-Carlo algorithm to generate particles in spherical anisotropic systems.Comment: 16 pages, 12 figures, accepted for publication in MNRAS (some figures have a lowered resolution
    • 

    corecore