82 research outputs found

    A Gap Waveguide-Based 2x2 Circularly-polarized Monopulse Antenna Array

    Get PDF
    Paper submitted to The European Conference on Antennas and Propagation 2022 (EuCAP), 27 March - 1 April 2022, Madrid (Spain).This paper presents a circular-polarized gap-waveguide-based compact monopulse array antenna for millimeter-wave tracking applications at Ka-band (29 to 31 GHz). The gap waveguide planar monopulse comparator network is integrated in a single layer with a 2x2 corporate-fed network combining ridge gap and groove gap waveguides. Radiating cavities consist of cubes with chamfered corners. Preliminary results show a bandwidth of 2 GHz with input reflection coefficients better than -20 dB for both ports of the antenna. In addition, the isolation between ports is greater than 50 dB. The design allows for scalability to build higher gain arrays from the antenna presented in this communication.This work is part of the projects PID2019-107688RB-C22 and PID2019-103982RB-C43 funded by the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033

    Mecanismo para conmutar el sentido de la polarización circular en antenas ranuradas en la banda Ka

    Get PDF
    This paper presents two slotted array antennas working in the Ka-band with switchable circular polarization capability. The first prototype is a series-fed slotted-waveguide linear array composed of ten T-shaped slots. The second antenna is a two-dimensional array with 2x2 T-shaped slots fed by a corporate distribution network. In both cases, a reflection coefficient below -10 dB has been experimentally observed within the targeted frequency band between 29.5 and 30.5 GHz. Good polarization purity is achieved for both polarization senses and in both prototypes. The fundamental contribution of the paper is to propose a simple mechanism to switch the circular polarization sense in a low-cost, low-profile and high-efficient antenna. The design and experimental results confirm that the solution is suitable for both one- and two-dimensional arrays in the millimeter-wave band

    Transición de Guía de Gap Semi-Modo a Coaxial para Aplicaciones de Milimétricas

    Get PDF
    En esta comunicación se presenta una transición en línea entre la nueva tecnología de guía de ondas de ranura de media onda (HM-GGW) y una sonda coaxial en la banda Ka. El contexto del trabajo es el de las comunicaciones por satélite (SATCOM) y la necesidad de dispositivos de banda K/Ka más pequeños y de bajas pérdidas. El diseño consiste en una superficie de alta impedancia (HIS) que se realiza con un band gap electromagnético (EBG) tipo champiñón para facilitar su fabricación en una placa de circuito impreso (PCB). Se utiliza una etapa intermedia de guía de ondas de ranura de microstrip-ridge (MRGW) para conectar ambas estructuras debido a su fácil integración con el EBG tipo champiñón en la misma PCB. Los resultados simulados de la transición de punta a punta muestran una pérdida de retorno de 20 dB y una pérdida de inserción de 0.03 dB en la banda de frecuencia de 29-31 GHz

    Explorando las prestaciones y ventajas de la Half-Groove Gap Waveguide

    Get PDF
    En este texto se explora una guía de onda de medio modo basada en la tecnología Gap Waveguide (GW) para la creación rápida de prototipos. Se han diseñado y medido dos dispositivos con fines demostrativos: un divisor de potencia y una guía de onda curvada. Ambos dispositivos están construidos a partir de dos piezas metálicas sin contacto. Ambos dispositivos siguen también el mismo proceso de diseño. En la pieza inferior se aloja una Half-Groove Gap Waveguide (HM-GGW). La altura de la HM-GGW es aproximadamente la mitad de la necesaria para propagar el modo fundamental. La cubierta superior es una superficie uniforme con pines que actúa como superficie de alta impedancia (HIS) sobre la HM-GGW inferior. Tanto el divisor de potencia como la guía de ondas curvada muestran coeficiente de reflexión medidos inferiores a −15 dB en el ancho de banda de interés (28 a 31 GHz), con una excelente concordancia con los resultados simulados. Estos dispositivos destacan por su facilidad de fabricación y abren un horizonte para diseños de GW más baratos y robustos para la producción en masa

    Antena monopulso compacta de una sola capa en banda Ka con tecnología Gap Waveguide

    Get PDF
    Este artículo presenta una antena monopulso compacta para aplicaciones de seguimiento de ondas milimétricas en la banda Ka (27.5 a 30.5 GHz). Se ha diseñado una antena de bajas pérdidas para ser utilizada en una red comparadora de monopulso. La red comparadora monopulso utiliza una red de alimentación combinando guías Groove Gap y Ridge Gap Waveguide y se integra en una sola capa. Se presentan los resultados simulados de una agrupación de 2×2 antenas. Se han obtenido coeficientes de reflexión de entrada mejores que −12 dB para los puertos de suma y diferencia en la banda de frecuencias de interés. Además, el aislamiento entre los puertos suma y diferencia es superior a 50 dB. La simplicidad del diseño y el hecho de que esté alojado en una sola capa permiten un fácil escalado a agrupaciones más grandes

    Elemento radiante de banda ancha en forma de grano de café para guías de onda ranuradas con polarización circular

    Get PDF
    Se presenta un elemento radiante de banda ancha con forma de grano de café para agrupaciones de guía de ondas ranuradas con polarización circular. La solución propuesta se basa en un polarizador muy sencillo destinado a ser integrado en antenas planas en la banda de ondas milimétricas. Para su validación, se toma como alimentador una agrupación de ranuras conectadas por una red corporativa. En este trabajo se presentan resultados simulados utilizando condiciones de contorno periódicas en la celda unidad. Los resultados preliminares muestran un ancho de banda de frecuencia de 4 GHz con un coeficiente de reflexión por debajo de -10 dB. Cabe destacar la buena pureza de polarización conseguida, al obtener una relación axial por debajo de 1.5 dB de 29 GHz a 31 GHz y por debajo de 3 dB en toda la banda de interés (28 a 32 GHz).Este trabajo ha sido apoyado por el Ministerio de Ciencia, Innovación y Universidades con el proyecto PID2019-107688RB-C22

    Antennas and Propagation Lab. Annual Research Report 2019

    Get PDF
    The Antennas and Propagation Laboratory (APL) focuses its research activities on various areas related to the analysis and design of antennas, as well as to the analysis of different propagation environments. The operating frequency bands under study range from UHF to the V band, thereby covering a wide range of applications, from mobile terminals, to satellite antennas. This report details some of its projects up to 2019

    Gap Waveguide Technology for Millimeter-Wave Antenna Systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Millimeter-wave communication systems require many innovative antennas adapted for future application scenarios such as the upcoming 5G cellular networks. Due to the strong path loss in free space at the millimeter-wave frequency range, high gain and low-cost antennas are in great demand. Also, advanced features such as multi-beam for multiple user, dual-polarization, or even complete phased arrays with enormous degrees of freedom in beamforming are some of the key research lines for antenna designers nowadays. In this article an overview of a new type of family of low-loss antennas and components based on the recently developed gap waveguide technology is presented. With the advent of new millimeter-wave applications, this low-cost and low-loss waveguide technology can be considered as a good candidate to be used as the core RF building block.This work has been partly funded by the Spanish Government through projects TEC2013-44019-R, TEC2016-79700-C2-1-R and TEC2016-79700-C2-2-R and by Madrid Regional Government under the project S2013/ICE-3000.Rajo Iglesias, E.; Ferrando-Rocher, M.; Uz Zaman, A. (2018). Gap Waveguide Technology for Millimeter-Wave Antenna Systems. IEEE Communications Magazine. 56(7):14-20. https://doi.org/10.1109/MCOM.2018.1700998S142056

    Comments on “Ka-Band Coplanar Magic-T Based on Gap Waveguide Technology”

    Get PDF
    In the title paper, the author proposes a Ka-Band Coplanar Magic-T Based on Gap-Waveguide (GW) Technology. The major novelty claimed in the paper is the combination of ridge-gap and E-plane groove-gap waveguides for Ka-band applications. However, such combination of these two types of waveguides in GW technology was firstly proposed in 2017. This combination allows for the realization of numerous devices, and distribution networks in the millimeter-wave band. This comment aims to properly frame the evolution of the use of RGW-GGW networks and how their use can be useful for new mm-wave band devices. While the author’s Magic-T introduces a new feature by using a 4-port network, it is clear that the concept relies on previous ideas not mentioned in the manuscript and this can lead to confusion about its actual novel contributions. In addition, we intend to give the microwave community a proper perspective of the above work’s frame of reference

    Methodology based on collaborative problem solving implemented in a high academic achievement group

    Get PDF
    [EN] The High Academic Achievement (ARA, by its acronym in Spanish) group began its course in the 2011/12 academic year to reinforce the potential of the most outstanding students since the beginning of their university studies. In order to improve the employability of this students, at least 50% of basic or compulsory credits of the degree are taught in English. In addition, a series of language training aids are provided, which also has advantages in obtaining Erasmus scholarships. The ARA group only offers 25 places each academic course. Being a small group, personalized teaching is enhanced while the schedule is compacted. In this contribution the methodology used in the subject of Signals and Systems of the Degree in Sound and Image in Telecommunication Engineering of the Alicante University (Spain) is presented. The methodology emphasizes the practical application of the subject and its direct applicability in real systems.Ferrando-Rocher, M.; Marini, S.; Galiana-Merino, J.; Carbajo, J. (2020). Methodology based on collaborative problem solving implemented in a high academic achievement group. En 6th International Conference on Higher Education Advances (HEAd'20). Editorial Universitat Politècnica de València. (30-05-2020):555-560. https://doi.org/10.4995/HEAd20.2020.11105OCS55556030-05-202
    corecore