83 research outputs found

    Cooperative distributed MPC for tracking

    Get PDF
    This paper proposes a cooperative distributed linear model predictive control (MPC) strategy for tracking changing setpoints, applicable to any finite number of subsystems. The proposed controller is able to drive the whole system to any admissible setpoint in an admissible way, ensuring feasibility under any change of setpoint. It also provides a larger domain of attraction than standard distributed MPC for regulation, due to the particular terminal constraint. Moreover, the controller ensures convergence to the centralized optimum, even in the case of coupled constraints. This is possible thanks to the warm start used to initialize the optimization Algorithm, and to the design of the cost function, which integrates a Steady-State Target Optimizer (SSTO). The controller is applied to a real four-tank plant

    Arterial Stiffness in Chronic Kidney Disease: The Usefulness of a Marker of Vascular Damage

    Get PDF
    Increased arterial stiffness is a marker of vasculopathy in chronic kidney disease (CKD) patients, suggesting a significant cardiovascular damage. Detection of arterial stiffness provides physicians with useful prognostic information independent of traditional cardiovascular (CV) risk factors. In addition, this knowledge may help guide appropriate therapeutic choices and monitor the effectiveness of antihypertensive therapies. We review the relationship between arterial stiffness and CKD, as well as the prognostic implications of increased arterial stiffness and the potential therapeutic strategies to ameliorate arterial compliance and outcome in CKD

    Set-Point Tracking MPC with Avoidance Features

    Full text link
    This work proposes a finite-horizon optimal control strategy to solve the tracking problem while providing avoidance features to the closed-loop system. Inspired by the set-point tracking model predictive control (MPC) framework, the central idea of including artificial variables into the optimal control problem is considered. This approach allows us to add avoidance features into the set-point tracking MPC strategy without losing the properties of an enlarged domain of attraction and feasibility insurances in the face of any changing reference. Besides, the artificial variables are considered together with an avoidance cost functional to establish the basis of the strategy, maintaining the recursive feasibility property in the presence of a previously unknown number of regions to be avoided. It is shown that the closed-loop system is recursively feasible and input-to-state-stable under the mild assumption that the avoidance cost is uniformly bounded over time. Finally, two numerical examples illustrate the controller behavior

    Robust Coalitional Model Predictive Control With Predicted Topology Transitions

    Get PDF
    This article presents a novel clustering model predictive control technique where transitions to the best cooperation topology are planned over the prediction horizon. A new variable, the so-called transition horizon, is added to the optimization problem to calculate the optimal instant to introduce the next topology. Accordingly, agents can predict topology transitions to adapt their trajectories while optimizing their goals. Moreover, conditions to guarantee recursive feasibility and robust stability of the system are provided. Finally, the proposed control method is tested via a simulated eight-coupled tanks plant

    MPC for tracking with maximum domain of attraction

    Get PDF
    This paper presents a novel set-based model predictive control for tracking, with the largest domain of attraction. The formulation - which consists of a single optimization problem - shows a dual behavior: one operating inside the maximal controllable set to the feasible equilibrium set, and the other operating at the NN-controllable set to the same equilibrium set. Based on some finite-time convergence results, global stability of the resulting closed-loop is proved, while recursive feasibility is ensured for any change of the set point. The properties and advantages of the controller have been tested on simulation models

    Model Predictive Control Structures for Periodic ON-OFF Irrigation

    Get PDF
    Agriculture accounts for approximately 70% of the world’s freshwater consumption. Furthermore, traditional irrigation practices, which rely on empirical methods, result in excessive water usage. This, in turn, leads to increased working hours for irrigation pumps and higher electricity consumption. The main objective of this study is to develop and evaluate periodic model predictive control structures that explicitly account for on-off irrigation, a characteristic of drip irrigation systems where watering can be turned on and off, but flow cannot be regulated. While both proposed control structures incorporate an economic upper layer (Real Time Optimizer, RTO), they differ in the costs associated with the lower layer. The first structure, called Model Predictive Control for Tracking (MPCT), focuses on tracking effectiveness, while the second structure, called Economic Model Predictive Control for Tracking (EMPCT), incorporates the economic cost into the tracking term. These proposed structures are tested in a realistic case study, specifically in a strawberry greenhouse, and both show satisfactory performance. The choice of the best option will depend on specific conditio

    Discrete-time switching MPC with applications to mitigate resistance in viral infections

    Get PDF
    Many engineering applications can be described as switched linear systems, in which the manipulated control action is the time-dependent switching signal. In such a case, the control strategy must select a linear autonomous system at each time step, among a finite number of them. Even when this selection can be done by solving a Dynamic Programming (DP) problem, the implementation of such a solution is often difficult and state/control constraints cannot be explicitly accounted for. In this paper, a new set-based Model Predictive Control (MPC) strategy is presented to handle switched linear systems in a tractable form. The optimization problem at the core of the MPC formulation consists of an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. The medical application of viral mutation and its respective drug resistance is addressed to acute and chronic infections. The objective is to attenuate the effect of mutations on the total viral load, and the numerical results suggested that the proposed strategy outperforms the schedule for available treatments.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemani

    Discrete-time MPC for switched systems with applications to biomedical problems

    Get PDF
    Switched systems in which the manipulated control action is the time-dependingswitching signal describe many engineering problems, mainly related to biomedical applications. In such a context, to control the system means to select an autonomous system - at each time step - among a given finite family. Even when this selection can be done by solving a Dynamic Programming (DP) problem, such a solution is often difficult to apply, and state/control constraints cannot be explicitly considered. In this work a new set-based Model Predictive Control (MPC) strategy is proposed to handle switched systems in a tractable form. The optimization problem at the core of the MPC formulation consists in an easy-to-solve mixed-integer optimization problem, whose solution is applied in a receding horizon way. Two biomedical applications are simulated to test the controller: (i) the drug schedule to attenuate the effect of viralmutation and drugs resistance on the viral load, and (ii) the drug schedule for Triple Negative breast cancer treatment. The numerical results suggest that the proposed strategy outperform the schedule for available treatments.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Universidad Tecnológica Nacional; ArgentinaFil: Hernandez Vargas, Esteban Abelardo. Frankfurt Institute For Advanced Studies-fias; Alemani

    Integrating the RTO in the MPC: an adaptive gradient-based approach

    Get PDF
    Model Predictive Control (MPC) is the most used advanced control technique in process industries, since it ensures stability, constraints satisfaction and convergence to the setpoint. The optimal setpoint is calculated by the Real Time Optimizer (RTO), minimizing the economic objective taking into account the operational limits of the plant. Since RTO employs complex stationary nonlinear models to perform the optimization and a larger sampling time than the controller, the economic setpoints calculated by the RTO may be inconsistent for the MPC layer and the economic performance of the overall controller may be worse than expected. The aim of this work is to propose an MPC controller that explicitly integrates the RTO into the MPC control layer. The proposed strategy is based on the MPC for tracking; the optimization problem to be solved only requires one evaluation of the gradient of the economic cost function at each sampling time. Based on this gradient, a second order approximation of the economic function is obtained and used in the MPC optimization problem resulting in a convex optimization problem. Recursive feasibility and convergence to the optimal equilibrium point is ensured

    MPC for tracking with maximum domain of attraction

    Get PDF
    This paper presents a novel set-based model predictive control for tracking, with the largest domain of attraction. The formulation - which consists of a single optimization problem - shows a dual behavior: one operating inside the maximal controllable set to the feasible equilibrium set, and the other operating at the N-controllable set to the same equilibrium set. Based on some finite-time convergence results, global stability of the resulting closed-loop is proved, while recursive feasibility is ensured for any change of the set point. The properties and advantages of the controller have been tested on simulation models.Fil: Anderson, Alejandro Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: D'jorge, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: González, Alejandro Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Ferramosca, Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Tecnológica Nacional. Facultad Regional Reconquista; ArgentinaFil: Actis, Marcelo Jesús. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentin
    corecore