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Abstract— Model Predictive Control (MPC) is the most used
advanced control technique in process industries, since it
ensures stability, constraints satisfaction and convergence to the
setpoint. The optimal setpoint is calculated by the Real Time
Optimizer (RTO), minimizing the economic objective taking
into account the operational limits of the plant. Since RTO
employs complex stationary nonlinear models to perform the
optimization and a larger sampling time than the controller, the
economic setpoints calculated by the RTO may be inconsistent
for the MPC layer and the economic performance of the overall
controller may be worse than expected. The aim of this work is
to propose an MPC controller that explicitly integrates the RTO
into the MPC control layer. The proposed strategy is based on
the MPC for tracking; the optimization problem to be solved
only requires one evaluation of the gradient of the economic cost
function at each sampling time. Based on this gradient, a second
order approximation of the economic function is obtained and
used in the MPC optimization problem resulting in a convex
optimization problem. Recursive feasibility and convergence to
the optimal equilibrium point is ensured.

I. INTRODUCTION

In the process industries, the control task is usually
performed by means of a hierarchical control structure [1]:
at the top, an economic scheduler and planner determines
the whole plant production (level, quality, etc.). In the next
layer, a Real Time Optimizer (RTO), computes the stationary
targets minimizing an economic criterion and according to
the information that it receives from the scheduler. Then, the
targets computed by the RTO are sent to the MPC control
level which calculates the control actions necessary to drive
the plant to the targets.

The communication between the RTO and the MPC layers
may be inconsistent. This is mainly due to the fact that the
RTO is usually based on a complex nonlinear stationary
model of the plant, while the MPC take into account a
simplified dynamic model. Moreover, the RTO sampling time

The authors would like to thank to the reviewers their helpful comments
on this paper.
This work has been funded by the National Plan Project DPI2010-21589-
C05-01 of the Spanish Ministry of Science and Innovation and FEDER
funds, and ANPCYT, Ar- gentina (PICT 2008, contract number 1833).

is larger than that of the MPC, since it optimizes only at a
stationary point. As a consequence, problems that go from
unreachability of the target to poor economic performance
are not unusual. A proper strategy to unify these (probably
competing) objectives is, hence, highly desirable.

In [2], [3] the authors propose an MPC for tracking,
characterized by a modified cost function that includes an
additional term, the so-called offset cost function, which
minimizes the distance from an artificial steady state to the
desired target, in such a way that the recursive feasibility, the
convergence and the local optimality of the control strategy
can be assured. Similar strategies, which includes slack
variables and are formulated for input increment models, are
also presented in [4] and [5].

All these approaches assume an implicit separation be-
tween transient and stationary objectives, by including ad-
ditional terms to the traditional MPC cost. Since this addi-
tional terms can assume different forms (under some mild
assumptions), they open the door to the idea of including
stationary economic objectives in the own MPC problem.
In such a way, a one-layer RTO-MPC could be proposed
[6]. The drawback of this strategy is that, the high nonlin-
earity of the economic RTO cost function, turns the one-
layer MPC cost also nonlinear and difficult to be solved.
In [7] the authors present the formulation and industrial
application of a combined RTO/MPC controller applied to
a fluidized-bed catalytic cracker, FCC, in which the RTO
economic cost function is part of the MPC cost function.
In [8], the gradient of the economic objective function is
included in the controller cost function, in order to obtain a
computationally low-cost strategy. An enhanced formulation
of this approach is presented in [9], where a suboptimal MPC
strategy is presented, which ensures recursive feasibility and
convergence to the (economically) optimal target, with a
reduced computational cost.

In this work, the one-layer MPC strategy is improved,
by adding a second order approximation of the RTO cost
function to the MPC cost. In this way the optimization
problem is turned into a convex problem than only requires
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one evaluation of the gradient of the economic cost function
per sampling time. Recursive feasibility and convergence to
the (economically) optimal steady state are ensured.

II. PROBLEM STATEMENT

In the control structure aimed to optimize the economic
cost of the operation of the plant, the Real Time Optimizer
is the responsible for calculate the optimal equilibrium point
where the plant should operate. This optimal equilibrium
is obtained from the solution of the following optimization
problem

min
xs,us

Φ(xs, us, p)

s.t. F (xs, us) = 0

H(xs, us) ≤ 0

where xs and us denote a steady state and input of the plant,
Φ(xs, us; p) is the cost function of the process that depends
of a set of parameters p such as unitary prices, costs, etc.;
F (xs, us) = 0 is the stationary model of the plant (updated
with the reconciliated data and estimated parameters) and the
inequalities H(xs, us) ≤ 0 define the operational constraints
of the plant.

The optimal operation point is characterized by a set of
controlled variables ys denoted as targets. Assuming that this
set of controlled variables univocally defines an equilibrium
point of the plant, there exists functions such that every
solution of F (xs, us) = 0 is such that xs = gx(ys) and
us = gu(ys). Then substituting these ones in the RTO
optimization problem, this can be rewritten as

min
ys

feco(ys, p)

s.t. hq(ys) ≤ 0, q ∈ I1:nh

where feco and hq are strictly related to Φ(xs, us, p),
F (xs, us) and H(xs, us) but represented as functions of
ys. The optimal target that defines the economically optimal
operation point is denoted as yt. The feasible set of this
optimization problem is denoted as Yt.

The following conditions are assumed:
Assumption 1: The functions feco and hq are assumed to

be convex and the optimal solution of the RTO optimization
problem is unique. Besides ∀ys ∈ Yt there exists a K∞
function α such that

feco(ys, p)− feco(yt, p) ≥ α(|ys − yt|)

�
Furthermore, the economic cost function must satisfy the
following assumption.

Assumption 2: The gradient of feco(y, p) and the gradient
of hq(y) are Lipschitz continuous in Yt, that is,

∥∇yfeco(y1; p)−∇yfeco(y2; p)∥ ≤ ρf |y1 − y2|

and

∥∇yhq(y1)−∇yhq(y2)∥ ≤ πq|y1 − y2|, q ∈ I1:nh

�

The role of the predictive controller is to regulate the
plant to the optimal operation point by steering the controlled
variables to the optimal target yt provided by the RTO. The
MPC is based on a prediction model that it is given by a
linear time-invariant discrete time model

x+ = Ax+Bu (1)
y = Cx+Du (2)

where x ∈ IRn is the system state, u ∈ IRm is the current
control vector, x+ is the successor state and y ∈ IRp is the
set of controlled variables of the plant. This prediction model
fulfills the following hypothesis.

Assumption 3: The pair (A,B) is controllable and the
state is measured at each sampling time.
The linear prediction model describes the transient of the
system, while the nonlinear nature of the plant is considered
in the RTO by means of the stationary model of the plant
F (x, u) = 0.

The solution of this system for a given sequence of control
inputs u = {u(0), · · · , u(j − 1)} and an initial state x is
denoted as x(j) = ϕ(j;x,u), where x = ϕ(0;x,u). The
state of the system and the control input applied at sampling
time k are denoted as x(k) and u(k) respectively.
The system is subject to constraints on state and input:

(x(k), u(k)) ∈ Z (3)

for all k ≥ 0, where X ⊂ Rn and U ⊂ Rm.
Assumption 4: The set Z is convex, closed and contains

the origin in its interior.
We define the set of admissible equilibrium points of the
prediction model as

Zs = {(x, u) ∈ γZ | x = Ax+Bu}
Xs = projx(Zs)

where γ is a constant contained in (0, 1), but arbitrarily close
to 1. This is added to avoid those equilibrium points where
the constraints are active.

III. THE TWO LAYER MPC STRUCTURE

In the hierarchical optimal controller, there exists a sep-
aration of objectives, models and time-scales between the
different layers. While the RTO optimizes the operation
of the plant at medium time-scales, the advanced control
scheme deals with the tracking and disturbance rejection
problem at a faster time-scale [1]. The main disadvantages
of the RTO are that the control structure exhibits a slow
reaction to process variations, for instance, disturbances,
due to the infrequent solution of the RTO and the existing
mismatches between the model used in the RTO and the
dynamic model used by the advanced controller. The model
mismatch may render the economic target calculated by the
RTO inconsistent with the dynamic model or the constraints
used in the advanced control [10].

In order to enhance the economic performance, some
methods tending to reduce the gap between the predictive
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controller and RTO have been proposed. One of the solu-
tions widely used is the addition of the steady state target
optimization (SSTO) with the MPC [11], [12]. In this case,
the advanced control is split into two layers: in the upper
level, denoted as steady state target optimizer (SSTO), the
setpoint of the predictive control (x∗

s, u
∗
s) is calculated by

solving a mathematical programming problem as follows

(x∗
s, u

∗
s) = arg min

xs,us

ℓeco(ys − yt)

s.t. xs = Axs +Bus + d̂

ys = Cxs +Dus

(xs, us) ∈ Z

where ℓeco(ys − yt) is a local approximation of the profit
function feco, typically a linear or a quadratic function.
The optimal setpoint is then calculated taking into account
information from the RTO and using as plant model the
prediction model of the MPC, leading to a reduction of the
inconsistencies [1]. Notice that the setpoints are updated with
the same time scale than the MPC and can take into account
the estimated mismatches between the linear model and the
plant d̂.

In the lower level, the predictive controller is designed
to regulate the plant to the desired setpoints. This is derived
from the solution of the following optimization problem [13]:

min
u

N−1∑
j=0

ℓ(x(j)− x∗
s, u(j)− u∗

s)

s.t. x(0) = x,

x(j + 1) = Ax(j) +Bu(j) + d̂, j ∈ I0:N−1

(x(j), u(j)) ∈ Z, ∈ I0:N−1

x(N) = x∗
s

where ℓ(·, ·) is a positive definite function that measures
the tracking error with the setpoint (x∗

s, u
∗
s) and x is the

state of the plant. The control law is derived by means of
the receding horizon technique: κN (x) = u0(0;x) and this
ensures asymptotic stability of the closed-loop system [14].

This two layer implementation has demonstrated to be a
practically successful solution to the optimal operation of the
plant. However it has been demonstrated that the economic
performance achieved could be enhanced. On the other hand,
throughout the operation of the plant, the economic target
calculated by RTO may experience frequent changes derived,
for instance, from changes in the profit function due to
variations of the parameters p of economic criteria. This
change of the economic target may lead to a loss of the
feasibility of the predictive controller.

In the following section, a possible solution to these
problems is presented. This controller integrates the RTO
and MPC in a single layer, leading to an enhancement of
the performance, and ensures stability and feasibility for any
variation of the parameters p.

IV. THE ONE LAYER ECONOMIC MPC STRATEGY

In this section, a controller that unifies the dynamic and
economic control objectives is presented. This controller

is formulated following [2], [3], but considering the offset
cost function as the economic objective. The controller cost
function is hence given by:

VN (x, d̂, p;u) =
N−1∑
j=0

ℓ(x(j)− x(N−1), u(j)− u(N−1))

+feco(y(N−1), p)

where ℓ(z, v) is a positive definite function of the form
ℓ(z, v) = ∥z∥2Q + ∥v∥2R (for appropriate matrices Q and R),
and feco(y, p) is the cost function of the RTO.

Notice that the first term of the cost can be considered
as a transitory term if the pair (x(N−1), u(N−1)) is forced
- by means of an additional constraint in the correspond-
ing optimization problem - to be a non-fixed (admissible)
equilibrium point. Furthermore, the second term can be
considered as a stationary term, in the sense that it only tries
to move the equilibrium point to which the transitory term
steers the system (characterized in this case by y(N−1)), to
a point that minimizes the stationary economic objective.
For any current state x, the optimization problem PN (x, d̂, p)
to be solved is given by:

min
u

VN (x, d̂, p;u) (4a)

s.t. x0 = x, (4b)

x(j + 1) = Ax(j) +Bu(j) + d̂, j ∈ I0:N−1 (4c)
y(j) = Cx(j) +Du(j) (4d)
(x(j), u(j)) ∈ Z, j ∈ I0:N−1 (4e)
x(N) = x(N − 1) (4f)
hq(y(N − 1)) ≤ 0, q ∈ I0:nh

(4g)

In this optimization problem, x, p and the estimated dis-
turbance d̂ are the parameters, while the input sequence
u = {u(0), · · · , u(N − 1)} is the optimization variable.
As it was said, the pair (x(N−1), u(N−1)) defines a strictly
admissible equilibrium point, such that x(N) = x(N − 1) is
in Xs.
The control law, following the receding horizon policy, is
given by κN (x, p) = u0(0;x), where u0(0;x) is the first
element of the solution sequence u0(x).

Remark 1: The domain of attraction of the proposed con-
trol strategy is given by the states that can be admissibly
steered in N − 1 steps to the equilibrium set Xs. This set is
the (N − 1)-step stabilizable set from X to Xs.
Assuming that the estimated disturbance d̂ is constant, if
feco and hq(y) are convex functions then this controller
ensures that the trajectory of the controlled systems satisfy
the constraints and converges to the optimal target yt [3].
Furthermore, if the parameters of the cost function p varies,
feasibility and asymptotic stability to the (new) optimal target
is preserved. If d̂ is time-varying, its evolution must be slow
enough to avoid a possible feasibility loss.

The main drawback of the aforementioned strategy, how-
ever, is neither the recursive feasibility, nor the convergence
to the economic optimum, but the computational burden
associated to optimization problem. In fact, the solution of
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the optimization problem PN (x, d̂, p) may require a large
number of evaluations of the economic cost functions per
sampling time and this may be computationally prohibitive,
and so, the on-line implementation of this one-layer strategy
may become impractical. To overcome this problem, instead
of directly solving the complex one-layer problem, a (local)
approximated problem, which is an upper bound of the
original one, is proposed in this work. By means of an
appropriate algorithm to update this local approximation,
convergence to the target can be assured.

Remark 2: A different way to approach this problem is
considering the so-called economic MPC formulation [15], in
which feco(x, u, p) is directly taken as stage cost of the MPC
controller. This solution is mainly proposed to improve the
economic optimality of the closed loop during the transient.
This implies the solution of a more complex optimization
problem. Besides, the stability and recursive feasibility may
be lost in case of changes in the economic cost function.

V. GRADIENT-BASED STRATEGY FOR THE ONE-LAYER
MPC

Consider that a suitable target z is chosen to calculate the
approximation of feco(y, p). This target must be a feasible
solution of the RTO, that is, z ∈ Yt.

It can be proved that the following lemma holds
Lemma 1: Consider that feco and the functions hq(y)

satisfy assumption 2 and let z ∈ Yt, then

feco(y, p) ≤ feco(z, p) +∇yfeco(z, p)
T (y − z)

+
ρf
2
∥y − z∥2

and

hq(y) ≤ hq(z) +∇yhq(z)
T (y − z)

+
πq

2
∥y − z∥2, q ∈ I1:nh

for all y ∈ Yt.
Define the approximated cost function for the proposed

MPC

V a
N (x, p, z;u) =

N−1∑
j=0

ℓ(x(j)− x(N−1), u(j)− u(N−1))

+feco(z, p)

+∇yfeco(z, p)
T (y(N − 1)− z)

+
ρf
2
∥y(N − 1)− z∥2

Notice that this cost function is a quadratic cost function and
it is an upper bound of the original cost function, that is

VN (x, p, z;u) ≤ V a
N (x, p, z;u)

On the other hand, the convex set defined as

Ya
t (z) = {y : hj(z) +∇yhj(z)

T (y − z)

+
πj

2
∥y − z∥2 ≤ 0, j ∈ I1:nh

}

is such that Ya
t (z) ⊆ Yt for all z ∈ Yt. Notice that for all

z ∈ Yt, the set Ya
t (z) is non-empty since z ∈ Ya

t (z).

Then, the approximated MPC optimization problem
P a
N (x, d̂, p, z) is derived from replacing the original con-

straints by their approximated counterparts, yielding

min
u

V a
N (x, p, z;u) (5a)

s.t. x0 = x, (5b)

x(j + 1) = Ax(j) +Bu(j) + d̂, j ∈ I0:N−1 (5c)
y(j) = Cx(j) +Du(j) (5d)
(x(j), u(j)) ∈ Z, j ∈ I0:N−1 (5e)
x(N) = x(N − 1) (5f)
y(N − 1) ∈ Ya

t (z) (5g)

The predictive control law derived from this optimization
problem is denoted as κa

N (x, d̂, p, z). This optimization prob-
lem is a convex problem (particularly a QCQP problem) that
can be efficiently solved using, for instance, interior point
methods [16]. Moreover, if the set Yt is a polyhedron, then
the resulting optimization problem is a QP.

It is important to remark that every feasible solution of
the approximated solution P a

N (x, d̂, p, z) is also a feasible
solution of the exact optimization problem PN (x, d̂, p, z).
Besides, the optimal solution is such that

VN
o(x, d̂, p, z) ≤ V a

N
o(x, d̂, p, z)

and then the approximated solution minimizes an upper
bound of the exact cost function. The approximation error
depends on the selection of the approximation point z. Then
the selection of this point plays an important role in the
economic optimality of the proposed controller.

In this paper we propose a control algorithm inspired
by the Newton’s optimization method: the approximation
point z(k) is taken as the optimal terminal output of the
last optimization problem. Then, the control algorithm is as
follows:

Algorithm 1 Newton-type Control Algorithm

Require: The estimated disturbance d̂, the set of parameters
p and an initial approximation point z(0)

1: Read x(k)
2: Solve P a

N (x(k), d̂, p, z(k))
3: Apply u(k)← κa

N (x(k), d̂, p, z(k))
4: Update z(k + 1)← y∗(N − 1|k)
5: Wait for the next sampling interval

VI. STABILITY AND CONVERGENCE ANALYSIS

In this section it will be proved that the proposed controller
ensures recursive feasibility for all initial state and for any
value of the parameters p. Besides it will be proved that the
closed-loop system converges to a stable equilibrium point
and this is the one that minimizes the economic cost function,
that is, y(k) converges to yt.

Now these statements are proved:
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Recursive feasibility:
Assume that at x(k) and z(k), the optimal solution is

uo(k). The successor state is x(k + 1). Let define the
sequence ũ(k+1) = {u(1|k), · · · , u(N−1|k), u(N−1|k)}.
Assuming that the estimated disturbance d̂ is constant, the
sequence of predicted states for ũ(k + 1) is x̃(k + 1) =
{x(1|k), · · · , x(N − 1|k), x(N − 1|k)}. Since uo(k) is fea-
sible, then (x̃(j|k + 1), ũ(j|k + 1)) ∈ Z and x̃(N |k + 1) =
x̃(N − 1|k + 1).
Besides, from the feasibility of the solution at k we have
that

y(N − 1|k) ∈ Ya
t (z(k)) ⊆ Yt

Then, since z(k + 1) = y(N − 1|k) ∈ Yt,

ỹ(N − 1|k + 1) = y(N − 1|k) ∈ Ya
t (z(k + 1))

Notice that this property holds for any value of p, since
the set of constraints does not depend on p.

Stability and convergence:
First it is proved that V a

N
o(x(k), z(k), p) is a decreasing

function. Denote

∆V a
N (k) = V a

N (x(k + 1), ũ(k + 1), z(k + 1), p)

−V a
N

o(x(k), z(k), p)

Then we have that

∆V a
N (k) =

(
V a
N (x(k + 1), ũ(k + 1), z(k + 1), p)

−V a
N (x(k + 1), ũ(k + 1), z(k), p)

)
+
[
V a
N (x(k + 1), ũ(k + 1), z(k), p)

−V a
N

o(x(k), z(k), p)
]

= ∆V1 +∆V2

Taking into account that z(k + 1) = y(N − 1|k), the first
term of the rhs of this equation is equal to

∆V1 = feco(y(N − 1|k))− feco(z(k), p)

+∇yfeco(z(k), p)
T (y(N − 1|k)− z(k))

+
ρf
2
∥y(N − 1|k)− z(k)∥2

From lemma 1 we derive that ∆V1 ≤ 0.
From [3], the second term of the equation is such that

∆V2 ≤ −ℓ(x(k)− x(N − 1|k), u(k)− u(N − 1|k))

Therefore we have that

∆V a
N (k) ≤ −ℓ(x(k)− x(N − 1|k), u(k)− u(N − 1|k))

Since ∆V a
N (k) is an upper bound of the decrement of the

optimal cost function, it is inferred that the system converges
to an admissible equilibrium point (x∞, u∞, y∞). At x∞, the
optimal solution is such that uo(j) = u∞ and xo(j) = x∞
and then z(k) converge to y∞, and then (x∞, u∞) ∈ Z such
that h(y∞) ≤ 0.

The optimal cost function at x∞ is V a
N (x∞, y∞, p) =

feco(y∞, p), then taking into account that the set Yt is convex

and the function feco is convex, from [3] it can be proved
that y∞ is such that

y∞ = arg min
y∈Yt

feco(y, p)

that is, the optimal solution of the RTO, y∞ = yt.

VII. EXAMPLE

In order to illustrate the properties of the controller, this is
applied to a simple academic example. We consider a linear
system given by the matrices

A =

[
1 1
0 1

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
This system is subject to the constraints ∥x(k)∥∞ ≤ 5 and
∥u(k)∥∞ ≤ 0.3. The considered economic function has been
feco(y, p) = ∥y − p∥32 where p is a time-varying parameter.
The proposed controller has been designed for Q = CTC
and R = 1 and the prediction horizon is N = 3.

In the test the parameter p changes from p1 = (−10,−10)
to p2 = (0, 10) and then back to p1. The resulting trajectory
of the system can be seen in the figure 1. In this figure, the
trajectory of the states are depicted in solid line, while in
dashed line the terminal state x(N − 1) is shown. Figure 2
shows the evolution of the input while Figure 2 shows the
evolution of the economic cost function feco(y, p) evaluated
at the current output.
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2
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x 1

0 10 20 30 40 50 60
−0.6
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−0.2

0

0.2
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x 2

Fig. 1. Evolution of the states of the system under changes in the parameter

It has been demonstrated that the system maintains re-
cursive feasibility under large changes in the parameter p.
Furthermore, for each constant value of p, the controller
steers the system to the point where the economic function
is minimized and this property has been achieved by solving
one single QP at each sampling time and calculating the
gradient of feco once per sample.

VIII. CONCLUSIONS

In this paper a one-layer RTO/MPC formulation has been
presented, in such a way that the controller cost function
includes a second order approximation of the original nonlin-
ear RTO cost function. The resulting cost is an upper bound
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Fig. 2. Evolution of the input of the system under changes in the parameter
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Fig. 3. Evolution of the economic function feco(y, p) under changes in
the parameter

of the one-layer MPC cost obtained by directly adding the
RTO nonlinear economic function to the MPC cost function.
Moreover, the use of EngellJPC2007EngellJPC2007this sec-
ond order approximation turns the optimization control prob-
lem into a convex problem. An iterative algorithm has been
presented, that ensures recursive feasibility and convergence
to the economic optimum, resorting to classic ideas of the
gradient-based optimization algorithms.
The controller has been designed following the MPC for
tracking formulation. This fact makes the controller guaran-
tees recursive feasibility under any change of the economic
function. Furthermore, if the system is initially in an admis-
sible steady state, then stability can be ensured even for a
small prediction horizon.
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