74 research outputs found

    Environmental dynamics as a structuring factor for microbial carbon utilization in a subtropical coastal lagoon

    Get PDF
    Laguna de Rocha belongs to a series of shallow coastal lagoons located along South America. It is periodically connected to the sea through a sand bar, exhibiting a hydrological cycle where physicochemical and biological gradients are rapidly established and destroyed. Its most frequent state is the separation of a Northern zone with low salinity, high turbidity and nutrient load, and extensive macrophyte growth, and a Southern zone with higher salinity and light penetration, and low nutrient content and macrophyte biomass. This zonation is reflected in microbial assemblages with contrasting abundance, activity, and community composition. The physicochemical conditions exerted a strong influence on community composition, and transplanted assemblages rapidly transformed to resembling the community of the recipient environment. Moreover, the major bacterial groups responded differently to their passage between the zones, being either stimulated or inhibited by the environmental changes, and exhibiting contrasting sensitivities to gradients. Addition of allochthonous carbon sources induced pronounced shifts in the bacterial communities, which in turn affected the microbial trophic web by stimulating heterotrophic flagellates and virus production. By contrast, addition of organic and inorganic nutrient sources (P or N) did not have significant effects. Altogether, our results suggest that (i) the planktonic microbial assemblage of this lagoon is predominantly carbon-limited, (ii) different bacterial groups cope differently with this constraint, and (iii) the hydrological cycle of the lagoon plays a key role for the alleviation or aggravation of bacterial carbon limitation. Based on these findings we propose a model of how hydrology affects the composition of bacterioplankton and of carbon processing in Laguna de Rocha.This might serve as a starting hypothesis for further studies about the microbial ecology of this lagoon, and of comparable transitional systems.Fil: Alonso, Cecilia. Universidad de la República; UruguayFil: Piccini, Claudia. Instituto de Investigaciones Biológicas "Clemente Estable"; UruguayFil: Unrein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Bertoglio, Florencia. Universidad de la República; UruguayFil: Conde, Daniel. Universidad de la República; UruguayFil: Pernthaler, Jakob. Universitat Zurich; Suiz

    ¿Quién se come a quién?: tramas tróficas microbianas y su implicancia en las lagunas pampeanas

    Get PDF
    Los microorganismos que conforman el plancton son componentes importantes en las relaciones alimentarias que ocurren en los ecosistemas acuáticos, ya que determinan en última instancia la cantidad de materia y energía disponible para los niveles tróficos superiores, representados por los consumidores. Entre estos microorganismos las bacterias que forman parte del plancton (bacterioplancton) registran valores extremadamente elevados de abundancia en las lagunas pampeanas, convirtiéndolas en un caso excepcional para la literatura limnológica.Instituto de Limnología "Dr. Raúl A. Ringuelet

    Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system

    Get PDF
    14 pages, 7 figures, 1 tableThe seasonal variation in the grazing effect of mixotrophic flagellates on bacterioplankton was assessed during an annual cycle in an oligotrophic coastal station in the northwest Mediterranean Sea. Ingestion rates of fluorescently labeled bacteria were estimated for different size categories of phytoflagellates (PF) and heterotrophic flagellates (HF) in short-term experiments and compared with long-term grazing estimates and published empirical models. The mixotrophic flagellates included haptophyte-like cells, cryptophytes, and dinoflagellates. The group-specific grazing rates (SGR) averaged 1.1 (3–5 µm PF), 1.3 (5–20 µm PF), 4.0 (<5 µm HF), and 15.4 bacteria individual-1 h-1 (5–20 µm HF). Lower SGR but higher abundances of PF resulted in an average mixotroph contribution of 50% to the total flagellate grazing. Remarkably, the effect was relatively high all through the year (35–65%). Regardless of the presence of chloroplasts, flagellates <5 mm in size accounted, on average, for about 80% of total flagellate bacterivory and ingested a large percentage of their cell carbon per day from bacteria. Soluble reactive phosphorus concentration was negatively correlated with the ingestion rate of both groups of PF, suggesting that mixotrophic flagellates would be using their phagotrophic capability to obtain phosphorus when this nutrient is limiting. HF grazing activity showed a marked seasonality, with grazing being higher during the warmer seasons, and clearance rates were positively correlated with water temperature. Total bacterivory accounted for most of the bacterial production. Short-term and long-term bacterivory measurements were highly correlated, confirming that the smallest flagellates were the main causative agent of bacterial loss. The bacterivory values were also well correlated to a published empirical model that considers HF as the only bacterivorous. However, this model underestimated (up to 50%) total flagellate grazing during periods of high effect of mixotrophic flagellatesThis study was supported mainly by a EU project (EVK3-CT-2002-00078) and a Spanish post-doctoral fellowship (SB2001-0166) and also partially funded by three projects supported by the Spanish government (REN2001-2120/MAR; CTM2004-12631/MAR; CTM2004-02586/MAR)Peer reviewe

    Phytoplankton phagotrophy across nutrients and light gradients using different measurement techniques

    Get PDF
    Mixotrophy is important to ecosystems functioning. Assuming that limiting resources induce phagotrophy in mixotrophs, we used a factorial experimental design to evaluate how nutrient and light affects phagotrophy in two mixotrophic phytoflagellates belonging to different lineages. We estimated cell-specific grazing rates (CSGR) by analyzing prey ingestion using microscopy and flow cytometry (FC). Furthermore, we tested if the acidotropic probe LysoTracker green (LyTG) can be used to differentiate autotrophs from mixotrophs. Cryptomonas marssonii (cryptophyte) had higher CSGR in high-nutrient treatments. Although it seems counterintuitive, phytoflagellates likely uses phagotrophy to obtain organic growth factors instead of inorganic nutrients when photosynthesis is more favorable. In contrast, CSGR in Ochromonas tuberculata (chrysophyte) increased when light decreased, suggesting that it uses phagotrophy to supplement carbon when autotrophic growth conditions are suboptimal. Measurements of CSGR obtained by FC and microscopy were significantly correlated and displayed the same trend among treatments, although FC rates tended to be higher. Fluorescence with LyTG did not differ from the control in the non-phagotrophic chlorophyte. Contrarily, addition of LyTG significantly increased the fluorescence in chrysophytes and cryptophytes, although no differences were observed among treatments. This approach allowed for differentiation between phagotrophic and non-phagotrophic flagellates but failed to quantify mixotrophy.Fil: Costa, Mariana R. A.. Universidade Federal do Rio Grande do Norte; BrasilFil: Sarmento, Hugo. Universidade Federal do São Carlos; BrasilFil: Becker, Vanessa. Universidade Federal do Rio Grande do Norte; BrasilFil: Bagatini, Inessa L. Universidade Federal do São Carlos; BrasilFil: Unrein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin

    Microbial assemblages associated with the invasive kelp Undaria pinnatifida in Patagonian coastal waters: Structure and alginolytic potential

    Get PDF
    Undaria pinnatifida is a brown algae native to Asia that has settled in various regions worldwide, periodically contributing with large quantities of C and nutrients during its annual cycle. In this work, we analyzed a coastal site in Patagonia (Argentina) that has been colonized for three decades by U. pinnatifida, focusing on associated microbial communities in three different compartments. An important influence of algae was observed in seawater, especially in the bottom of the algal forest during the austral summer (January) at the moment of greater biomass release. This was evidenced by changes in DOC concentration and its quality indicators (higher Freshness and lower Humification index) and higher DIC. Although maximum values of NH4 and PO4 were observed in January, bottom water samples had lower concentrations than surface water, suggesting nutrient consumption by bacteria during algal DOM release. Concomitantly, bacterial abundance peaked, reaching 4.68 ± 1.33 × 105 cells mL −1 (January), showing also higher capability of degrading alginate, a major component of brown algae cell walls. Microbial community structure was influenced by sampling date, season, sampling zone (surface or bottom), and environmental factors (temperature, salinity, pH, dissolved oxygen, nutrients). Samples of epiphytic biofilms showed a distinct community structure compared to seawater, lower diversity, and remarkably high alginolytic capability, suggesting adaptation to degrade algal biomass. A high microdiversity of populations of the genus Leucothrix (Gammaproteobacteria, Thiotrichales) that accounted for a large fraction of epiphytic communities was observed, and changed over time. Epiphytic assemblages shared more taxa with bottom than with surface seawater assemblages, indicating a certain level of exchange between communities in the forest surroundings. This work provides insight into the impact of U. pinnatifida decay on seawater quality, and the role of microbial communities on adapting to massive biomass inputs through rapid DOM turnover.Fil: Lozada, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Zabala, Maria Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Garcia, Patricia Elizabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Dieguez, Maria del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Bigatti, Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; ArgentinaFil: Fermani, Paulina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Unrein, Fernando. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Dionisi, Hebe Monica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; Argentin

    Diversity of photosynthetic picoeukaryotes in eutrophic shallow lakes as assessed by combining flow cytometry cell-sorting and high throughput sequencing

    Get PDF
    Photosynthetic picoeukaryotes (PPE) are key components of primary production in marine and freshwater ecosystems. In contrast with those of marine environments, freshwater PPE groups have received little attention. In this work, we used flow cytometry cell sorting, microscopy and metabarcoding to investigate the composition of small photosynthetic eukaryote communities from six eutrophic shallow lakes in South America, Argentina. We compared the total molecular diversity obtained from PPE sorted populations as well as from filtered total plankton samples (FTP). Most reads obtained from sorted populations belonged to the classes: Trebouxiophyceae, Chlorophyceae and Bacillariophyceae. We retrieved sequences from non-photosynthetic groups, such as Chytridiomycetes and Ichthyosporea which contain a number of described parasites, indicating that these organisms were probably in association with the autotrophic cells sorted. Dominant groups among sorted PPEs were poorly represented in FTP and their richness was on average lower than in the sorted samples. A significant number of operational taxonomic units (OTUs) were exclusively found in sorting samples, emphasizing that sequences from FTP underestimate the diversity of PPE. Moreover, 22% of the OTUs found among the dominant groups had a low similarity (<95%) with reported sequences in public databases, demonstrating a high potential for novel diversity in these lakes.Fil: Metz, Sebastián Darío. Universidad Nacional de San Martin. Instituto Tecnológico de Chascomús - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Tecnológico de Chascomús; ArgentinaFil: Dos Santos, Adriana Lopes. Sorbonne University; Francia. Centre National de la Recherche Scientifique; Francia. Nanyang Technological University; SingapurFil: Castro Berman, Manuel. Universidad Nacional de San Martin. Instituto Tecnológico de Chascomús - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Tecnológico de Chascomús; ArgentinaFil: Bigeard, Estelle. Sorbonne University; Francia. Centre National de la Recherche Scientifique; Francia. Nanyang Technological University; SingapurFil: Licursi, Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Not, Fabrice. Sorbonne University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Lara, Enrique. University of Neuchatel; SuizaFil: Unrein, Fernando. Universidad Nacional de San Martin. Instituto Tecnológico de Chascomús - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Tecnológico de Chascomús; Argentin

    The plankton communities from peat bog pools: structure, temporal variation and environmental factors

    Get PDF
    This is the first characterization of the structure and temporal variation of the plankton communities comprising the complete food web in five peat bog pools related to environmental factors over two consecutive ice-free periods in Tierra del Fuego (548S). Remarkably, picophytoplankton was composed solely of eukaryotic cells, surpassing the dominance expectations for these acidic water bodies, whereas testaceans were virtually absent, even as tychoplankters. Abundances of the different planktonic communities were slightly higher than those reported for Northern Hemisphere peat bogs and humic lakes. Mixotrophic nutrition prevailed among nano- and microphytoplankters, a strategy also common in humic lakes. The structures in spring of the planktonic communities were similar. In contrast, in late summer there were differences in the abundance and biomass of the different trophic compartments among small, shallow water bodies and large ones. These seem to be dictated by distinct pool size-driven patterns of water temperature variation. A general shift in the control of heterotrophic flagellates abundance in the pools occurred, changing from bottom-up regulation in spring to top-down control in late summer related to temperature-dependant variations in zooplankton abundance and composition. We hypothesize that changes in the trophic interactions affecting the entire food web occur over the open water period in these aquatic ecosystems, and that these are dictated by pool morphometry and related abiotic features.Facultad de Ciencias Naturales y MuseoInstituto de Limnología "Dr. Raul A. Ringuelet

    FlowDiv: A new pipeline for analyzing flow cytometric diversity

    Get PDF
    Background: Flow cytometry (FCM) is one of the most commonly used technologies for analysis of numerous biological systems at the cellular level, from cancer cells to microbial communities. Its high potential and wide applicability led to the development of various analytical protocols, which are often not interchangeable between fields of expertise. Environmental science in particular faces difficulty in adapting to non-specific protocols, mainly because of the highly heterogeneous nature of environmental samples. This variety, although it is intrinsic to environmental studies, makes it difficult to adjust analytical protocols to maintain both mathematical formalism and comprehensible biological interpretations, principally for questions that rely on the evaluation of differences between cytograms, an approach also termed cytometric diversity. Despite the availability of promising bioinformatic tools conceived for or adapted to cytometric diversity, most of them still cannot deal with common technical issues such as the integration of differently acquired datasets, the optimal number of bins, and the effective correlation of bins to previously known cytometric populations. Results: To address these and other questions, we have developed flowDiv, an R language pipeline for analysis of environmental flow cytometry data. Here, we present the rationale for flowDiv and apply the method to a real dataset from 31 freshwater lakes in Patagonia, Argentina, to reveal significant aspects of their cytometric diversities. Conclusions: flowDiv provides a rather intuitive way of proceeding with FCM analysis, as it combines formal mathematical solutions and biological rationales in an intuitive framework specifically designed to explore cytometric diversity.Fil: Wanderley, Bruno M. S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Araújo, Daniel S.. Universidade Federal do Rio Grande do Norte; BrasilFil: Quiroga, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Amado, André M.. Universidade Federal do Rio Grande do Norte; Brasil. Universidade Federal de Juiz de Fora; BrasilFil: Neto, Adrião D. D.. Universidade Federal do Rio Grande do Norte; BrasilFil: Sarmento, Hugo. Universidade Federal do São Carlos; BrasilFil: Metz, Sebastián Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Unrein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Temporal patterns of picoplankton abundance and metabolism on the western coast of the equatorial Atlantic Ocean

    Get PDF
    Picoplankton are central global carbon (C) cycling players and often dominate the ocean plankton communities, especially in low latitudes. Therefore, evaluating picoplankton temporal dynamics is critical to understanding microbial stocks and C fluxes in tropical oceans. However, the lack of studies on low-latitude picoplankton communities translates into a common conception that there is an absence of seasonality. Herein, we studied the temporal variation in abundance (measured by flow cytometry), and carbon flux (taking bacterial production and respiration as proxies) of the picoplanktonic community for the first time, as well as their environmental drivers in a low-latitude (05° 59’ 20.7″S 035° 05’ 14.6″W) Atlantic coastal station. We performed monthly samplings between February 2013 and August 2016 in a novel microbial observatory – hereafter called the Equatorial Atlantic Microbial Observatory – established on the northeastern Brazilian Atlantic coast. Our results revealed stability in temporal dynamics of picoplankton, despite a considerable inter-annual variation, with some related to the El Niño (ENSO) event in 2015. However, weak environmental relationships found were not enough to explain the variation in picoplankton’s abundance, which suggests that other factors such as biological interactions may lead to picoplankton abundance variation over time. Heterotrophic bacteria dominated picoplankton during the entire study period and between photosynthetic counterparts, and Synechococcus showed greater relative importance than picoeukaryotes. These results bring a novel perspective that picoplankton may exhibit more pronounced fluctuations in the tropical region when considering inter-annual intervals, and is increasing prokaryotic contribution to carbon cycling towards the equator.Fil: Menezes, Maiara. Universidade Federal do Rio Grande do Norte; BrasilFil: Junger, Pedro C.. Universidade Federal do São Carlos; BrasilFil: Kavagutti, Vinicius S.. Universidade Federal do São Carlos; BrasilFil: Wanderley, Bruno. Universidade Federal do Rio Grande do Norte; BrasilFil: Cabral, Anderson de Souza. Universidade Federal do Rio de Janeiro; BrasilFil: Paranhos, Rodolfo. Universidade Federal do Rio de Janeiro; BrasilFil: Unrein, Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; ArgentinaFil: Amado, André M.. Universidade Federal do Rio Grande do Norte; Brasil. Universidade Federal de Juiz de Fora; BrasilFil: Sarmento, Hugo. Universidade Federal do São Carlos; Brasi
    corecore