31 research outputs found

    The influence of environmental particulate matter exposure during late gestation and early life on the risk of neurodevelopmental disorders: a systematic review of experimental evidences

    Get PDF
    Particulate matter (PM) is a major component of ambient air pollution (AAP), being widely associated with adverse health effects. Epidemiological and experimental studies point towards a clear implication of AAP on the development of central nervous system (CNS) diseases. In this sense, the period of most CNS susceptibility is early life, when the CNS is maturing. In humans the last trimester of gestation is crucial for brain maturation while in rodents, due to the shorter gestational period, the brain is still immature at birth, and early postnatal development plays a significant role. The present systematic review provides an updated overview and discusses the existing literature on the relationship between early exposure to PM and neurodevelopmental outcomes in experimental studies. We included 11 studies with postnatal exposure and 9 studies with both prenatal and postnatal exposure. Consistent results between studies suggest that PM exposure could alter normal development, triggering impairments in short-term memory, sociability, and impulsive-like behavior. This is also associated with alterations in synaptic plasticity and in the immune system. Interestingly, differences have been observed between sexes, although not all studies included females. Furthermore, the developmental window of exposure seems to be crucial for effects to be observed in the future. In summary, air pollution exposure during development affects subjects in a time- and sex-dependent manner, the postnatal period being more important and being males apparently more sensitive to exposure than females. Nevertheless, additional experimental investigations should prioritize the examination of learning, impulsivity, and biochemical parameters, with particular attention provided to disparities between sexes

    Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review

    Get PDF
    In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health.This study was supported by grants from the Spanish Government (Ministerio de Economía y Competitividad and Instituto Mixto de Investigación-Escuela Nacional de Sanidad (IMIENS)) and the Fondo Europeo de Desarrollo Regional (MINECO-FEDER) Grant numbers: PSI2017-90806-REDT, PSI2017-83038-P, PSI2017-83893-R, PSI2017-86396-P, PSI2017-86847-C2-2-R MINECO-FEDER, and IMIENS: PIC-IMIENS-2018-003.S

    Psicoexposoma: una perspectiva holística más allá de la salud y la enfermedad

    Get PDF
    Antecedentes: el concepto de exposoma surgió como una estrategia para impulsar el estudio exhaustivo de las exposiciones ambientales a lo largo de la vida del individuo y su impacto en la salud. El desarrollo de dispositivos electrónicos para obtener datos de geolocalización, biológicos o biomarcadores de exposición y los avances en las ciencias “ómicas” y en bioinformática permiten la recopilación y el análisis masivo de datos muy diversos. Objetivo: proponer el término psicoexposoma en línea con el concepto de exposoma generado desde las ciencias ambientales. Método: se llevó a cabo una revisión de la literatura para buscar la inclusión de términos psicológicos asociados al concepto de exposoma. Se discute la justificación de un enfoque de psicoexposición para las ciencias psicológicas. Resultados: los términos psicología, psiquiatría o enfermedades neurológicas son escasos en el enfoque del exposoma. La experiencia en el control de variables ambientales sitúa al psicólogo en un punto de partida ventajoso para realizar estudios de psicoexposoma. Conclusión: la psicología puede aprovechar tanto las ciencias de la exposición como las ciencias “ómicas” para crear un enfoque integrado de psicoexposición que pueda ayudar a descifrar la etiología de los trastornos psicológicos y a promover la salud mental del individuo.Background: The concept of the exposome has emerged as a new strategy for studying all environmental exposures throughout an individual’s life and their impact on human health. Nowadays, electronic devices are available to collect data about an individual’s geolocation, biological function, or exposure biomarkers. The appearance of “omic” sciences and advances in bioinformatics have allowed massive data-gathering and analysis from various scientific fields. Objective: to propose the term Psychoexposome in line with the concept of the exposome from the field of environmental sciences. Method: a literature review of psychological terms associated with the exposome concept was carried out and the rationale and benefits of a psychoexposme approach for psychological sciences is discussed. Results: the terms psychology, psychiatry and neurological diseases are scarce in the exposome approach. A long tradition in psychology of performing epidemiological studies and in the study of multifactorial influences traits places psychologists at an advantageous starting point for conducting psychoexposome studies. Conclusion: psychology may take advantage from both exposome and omic sciences to create an integrated psychoexposome approach that may help in deciphering the etiology of psychological disorders and improving people’s mental health

    Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review

    Get PDF
    In recent years, the worldwide prevalence of overweight and obesity among adults and children has dramatically increased. The conventional model regarding the onset of obesity is based on an imbalance between energy intake and expenditure. However, other possible environmental factors involved, such as the exposure to chemicals like pesticides, cannot be discarded. These compounds could act as endocrine-disrupting chemicals (EDC) that may interfere with hormone activity related to several mechanisms involved in body weight control. The main objective of this study was to systematically review the data provided in the scientific literature for a possible association between prenatal and postnatal exposure to pesticides and obesity in offspring. A total of 25 human and 9 animal studies were analyzed. The prenatal, perinatal, and postnatal exposure to organophosphate, organochlorine, pyrethroid, neonicotinoid, and carbamate, as well as a combined pesticide exposure was reviewed. This systematic review reveals that the effects of pesticide exposure on body weight are mostly inconclusive, finding conflicting results in both humans and experimental animals. The outcomes reviewed are dependent on many factors, including dosage and route of administration, species, sex, and treatment duration. More research is needed to effectively evaluate the impact of the combined effects of different pesticides on human health

    Relationship between Autism Spectrum Disorder and Pesticides: A Systematic Review of Human and Preclinical Models

    Get PDF
    Autism spectrum disorder (ASD) is a complex set of neurodevelopmental pathologies characterized by impoverished social and communicative abilities and stereotyped behaviors. Although its genetic basis is unquestionable, the involvement of environmental factors such as exposure to pesticides has also been proposed. Despite the systematic analyses of this relationship in humans, there are no specific reviews including both human and preclinical models. The present systematic review summarizes, analyzes, and discusses recent advances in preclinical and epidemiological studies. We included 45 human and 16 preclinical studies. These studies focused on Organophosphates (OP), Organochlorine (OC), Pyrethroid (PT), Neonicotinoid (NN), Carbamate (CM), and mixed exposures. Preclinical studies, where the OP Chlorpyrifos (CPF) compound is the one most studied, pointed to an association between gestational exposure and increased ASD-like behaviors, although the data are inconclusive with regard to other ages or pesticides. Studies in humans focused on prenatal exposure to OP and OC agents, and report cognitive and behavioral alterations related to ASD symptomatology. The results of both suggest that gestational exposure to certain OP agents could be linked to the clinical signs of ASD. Future experimental studies should focus on extending the analysis of ASD-like behaviors in preclinical models and include exposure patterns similar to those observed in human studies

    Chronic Neuropsychological Sequelae of Cholinesterase Inhibitors in the Absence of Structural Brain Damage: Two Cases of Acute Poisoning

    Get PDF
    Here we describe two cases of carbamate poisoning. Patients AMF and PVM were accidentally poisoned by cholinesterase inhibitors. The medical diagnosis in both cases was overcholinergic syndrome, as demonstrated by exposure to cholinesterase inhibitors. The widespread use of cholinesterase inhibitors, especially as pesticides, produces a great number of human poisoning events annually. The main known neurotoxic effect of these substances is cholinesterase inhibition, which causes cholinergic overstimulation. Once AMF and PVM had recovered from acute intoxication, they were subjected to extensive neuropsychological evaluation 3 and 12 months after the poisoning event. These assessments point to a cognitive deficit in attention, memory, perceptual, and motor domains 3 months after intoxication. One year later these sequelae remained, even though the brain magnetic resonance imaging (MRI) and computed tomography (CT) scans were interpreted as being within normal limits. We present these cases as examples of neuropsychological profiles of long-term sequelae related to acute poisoning by cholinesterase inhibitor pesticides and show the usefulness of neuropsychological assessment in detecting central nervous system dysfunction in the absence of biochemical or structural markers

    Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet

    Get PDF
    Developmental exposure to toxicants and diet can interact with an individual’s genetics and produce long-lasting metabolic adaptations. The different isoforms of the apolipoprotein E (APOE) are an important source of variability in metabolic disorders and influence the response to the pesticide chlorpyrifos (CPF). We aimed to study the epigenetic regulation on feeding control genes and the influence of postnatal CPF exposure, APOE genotype, and sex, and how these modifications impact on the metabolic response to a high-fat diet (HFD). Both male and female apoE3- and apoE4-TR mice were exposed to CPF on postnatal days 10–15. The DNA methylation pattern of proopiomelanocortin, neuropeptide Y, leptin receptor, and insulin-like growth factor 2 was studied in the hypothalamus. At adulthood, the mice were given a HFD for eight weeks. The results highlight the importance of sex in the epigenetic regulation and the implication of CPF treatment and APOE genotype. The body weight progression exhibited sex-dimorphic differences, apoE4-TR males being the most susceptible to the effects induced by CPF and HFD. Overall, these results underscore the pivotal role of sex, APOE genotype, and developmental exposure to CPF on subsequent metabolic disturbances later in life and show that sex is a key variable in epigenetic regulation

    Differential Effects of Transcranial Direct Current Stimulation (tDCS) Depending on Previous Musical Training

    No full text
    Previous studies have shown that transcranial direct current stimulation (tDCS) facilitates motor performance, but individual differences such as baseline performance seem to influence this effect. Accordingly, musicians offer an inter-individual differences model due to anatomical and functional variances displayed among the motor cortex regions. The aim of the present work was to study if the baseline motor skill predicts whether tDCS can enhance motor learning. For that objective, we administered anodal (n = 20) or sham (n = 20) tDCS on the right primary motor cortex region of 40 right-handed healthy participants, who were divided into four groups: musicians (tDCS/sham) and non-musicians (tDCS/sham). We measured the skill index (SI) presented in the sequential finger-tapping task (SEQTAP) at baseline, during three 20 min/2 mA stimulation sessions, and in follow-up tests after 20 min and 8 days. Depending on the normality of the data distribution, statistical differences were estimated by ANOVA and Bonferroni post hoc test or Kruskal–Wallis and U Mann–Whitney. Results showed that musicians scored higher in baseline performance than non-musicians. The non-musicians who received tDCS scored higher than the sham group in the first and second stimulation session. This effect was extended to the 20 min and 8 days follow-up test. In musicians, there was no effect of tDCS. The present method seems to be suitable for the achievement of positive and consolidated tDCS effects on motor learning in inexperienced participants, but not in musicians. These data may have an implication for the rehabilitation of motor impairments, contributing to more individualized stimulation protocols

    Long-term monoamine changes in the striatum and nucleus accumbens after acute chlorpyrifos exposure

    No full text
    This study examined the time-course effects (2, 7, 14 and 30 days) of acute chlorpyrifos (CPF) intoxication (250 mg/kg, s.c.) on monoamine systems and acetylcholinesterase (AChE) activity in the striatum and nucleus accumbens of adult male rats. We show that CPF produced significant long-term inhibition of AChE activity in the striatum and nucleus accumbens. In the striatum, CPF intoxication resulted in changes in dopamine (DA) metabolism after 2 days and changes in serotonin (5-HT) turnover after 7 and 15 days. Significant decreases in monoamine content including norepinephrine (NE), DA, 5-HT and their metabolites were found in the nucleus accumbens 30 days after CPF intoxication. These results suggest that acute exposure to CPF induces long-term changes in the monoamine systems (NE, DA and 5-HT) in adult animals. The lack of correlation between regional AChE activity and neurochemical outcomes points to independent mechanisms.This study was supported by research projects SEJ2006-15628-C02-01/PSIC, SEJ2006-15226-C02-01/PSIC and FIS061212.Peer reviewe
    corecore