31 research outputs found

    Wnt/β-Catenin Signaling Enhances Cyclooxygenase-2 (COX2) Transcriptional Activity in Gastric Cancer Cells

    Get PDF
    BACKGROUND: Increased expression of the cyclooxygenase-2 enzyme (COX2) is one of the main characteristics of gastric cancer (GC), which is a leading cause of death in the world, particularly in Asia and South America. Although the Wnt/β-catenin signaling pathway has been involved in the transcriptional activation of the COX2 gene, the precise mechanism modulating this response is still unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we studied the transcriptional regulation of the COX2 gene in GC cell lines and assessed whether this phenomenon is modulated by Wnt/β-catenin signaling. We first examined the expression of COX2 mRNA in GC cells and found that there is a differential expression pattern consistent with high levels of nuclear-localized β-catenin. Pharmacological treatment with either lithium or valproic acid and molecular induction with purified canonical Wnt3a significantly enhanced COX2 mRNA expression in a dose- and time-dependent manner. Serial deletion of a 1.6 Kbp COX2 promoter fragment and gain- or loss-of-function experiments allowed us to identify a minimal Wnt/β-catenin responsive region consisting of 0.8 Kbp of the COX2 promoter (pCOX2-0.8), which showed maximal response in gene-reporter assays. The activity of this pCOX2-0.8 promoter region was further confirmed by site-directed mutagenesis and DNA-protein binding assays. CONCLUSIONS/SIGNIFICANCE: We conclude that the pCOX2-0.8 minimal promoter contains a novel functional T-cell factor/lymphoid enhancer factor (TCF/LEF)-response element (TBE Site II; -689/-684) that responds directly to enhanced Wnt/β-catenin signaling and which may be important for the onset/progression of GC

    Enhanced CRAd Activity Using Enhancer Motifs Driven by a Nucleosome Positioning Sequence

    Get PDF
    Cancer development involves changes driven by the epigenetic machinery, including nucleosome positioning. Recently, the concept that adenoviral replication may be driven by tumor specific promoters (TSPs) gained support, and several conditionally replicative adenoviruses (CRAd) exhibited therapeutic efficacy in clinical trials. Here, we show for the first time that placing a nucleosome positioning sequence (NPS) upstream of a TSP combined with Wnt-responsive motifs (pART enhancer) enhanced the TSP transcriptional activity and increased the lytic activity of a CRAd. pART enhanced the transcriptional activity of the gastrointestinal cancer (GIC)-specific REG1A promoter (REG1A-pr); moreover, pART also increased the in vitro lytic activity of a CRAd whose replication was driven by REG1A-Pr. The pART enhancer effect in vitro and in vivo was strictly dependent on the presence of the NPS. Indeed, deletion of the NPS was strongly deleterious for the in vivo antitumor efficacy of the CRAd on orthotopically established pancreatic xenografts. pART also enhanced the specific activity ofmother heterologous promoters; moreover, the NPS was also able to enhance the responsiveness of hypoxia- and NFκ B-response elements. We conclude that NPS could be useful for gene therapy approaches in cancer as wellas other diseases.Fil: Bravo, Soraya. Universidad Andrés Bello; ChileFil: Núñez Aguilera, Felipe Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cruzat, Fernando. Universidad de Concepción; ChileFil: Cafferata, Eduardo Gustavo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: De Ferrari, Giancarlo V. Universidad Andrés Bello; ChileFil: Montecino, Martín. Universidad Andrés Bello; ChileFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Epigenetic control of cell cycle-dependent histone gene expression is a principal component of the abbreviated pluripotent cell cycle

    Get PDF
    Self-renewal of human pluripotent embryonic stem cells proceeds via an abbreviated cell cycle with a shortened G(1) phase. We examined which genes are modulated in this abbreviated period and the epigenetic mechanisms that control their expression. Accelerated upregulation of genes encoding histone proteins that support DNA replication is the most prominent gene regulatory program at the G(1)/S-phase transition in pluripotent cells. Expedited expression of histone genes is mediated by a unique chromatin architecture reflected by major nuclease hypersensitive sites, atypical distribution of epigenetic histone marks, and a region devoid of histone octamers. We observed remarkable differences in chromatin structure--hypersensitivity and histone protein modifications--between human embryonic stem (hES) and normal diploid cells. Cell cycle-dependent transcription factor binding permits dynamic three-dimensional interactions between transcript initiating and processing factors at 5\u27 and 3\u27 regions of the gene. Thus, progression through the abbreviated G(1) phase involves cell cycle stage-specific chromatin-remodeling events and rapid assembly of subnuclear microenvironments that activate histone gene transcription to promote nucleosomal packaging of newly replicated DNA during stem cell renewal

    Effects of protein–carbohydrate supplementation on immunity and resistance training outcomes: a double-blind, randomized, controlled clinical trial

    Get PDF
    Purpose: To examine the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on resistance training outcomes, body composition, muscle thickness, blood indices of health and salivary human neutrophil peptides (HNP1-3), as reference of humoral immunity followed an 8-week resistance training program in college athletes. Methods: Twenty-seven recreationally physically active males and females (n = 9 per treatment) were randomly assigned to one of the three groups: hydrolyzed beef protein, whey protein, or non-protein isoenergetic carbohydrate. Treatment consisted of ingesting 20 g of supplement, mixed with orange juice, once a day immediately post-workout or before breakfast on non-training days. Measurements were performed pre- and post-intervention on total load (kg) lifted at the first and last workout, body composition (via plethysmography) vastus medialis thickness (mm) (via ultrasonography), and blood indices of health. Salivary HNP1-3 were determined before and after performing the first and last workout. Results: Salivary concentration and secretion rates of the HNP1-3 decreased in the beef condition only from pre-first-workout (1.90 ± 0.83 μg/mL; 2.95 ± 2.83 μg/min, respectively) to pre-last-workout (0.92 ± 0.63 μg/mL, p = 0.025, d = 1.03; 0.76 ± 0.74 μg/min, p = 0.049, d = 0.95), and post-last-workout (0.95 ± 0.60 μg/mL, p = 0.032, d = 1.00; 0.59 ± 0.52 μg/min, p = 0.027, d = 1.02). No other significant differences between groups were observed. Conclusions: Supplementation with a carbohydrate–protein beverage may support resistance training outcomes in a comparable way as the ingestion of only carbohydrate. Furthermore, the ingestion of 20 g of hydrolyzed beef protein resulted in a decreased level and secretion rates of the HNP1-3 from baseline with no negative effect on blood indices of health

    Descripción fenotípica y avances en la obtención de un inmunógeno contra partículas de virus ISA (HPR7b), aisladas desde un salmón del Atlántico de vida libre capturado en el ecosistema Sur-Austral de Chile Phenotipic description and advances in obtaining an immunogen against ISAV particles (HPR7b) isolated from a free-living Atlantic salmon caught in the Austral Southern ecosystem of Chile

    No full text
    Se aislaron partículas del virus ISA cepa HPR7b, desde un salmón Atlántico capturado en el ecosistema Sur Austral de Chile. Se describe por primera vez la morfología de este genotipo mediante microscopía electrónica de transmisión. Se estimuló la producción de anticuerpos policlonales contra esta cepa en conejos: observándose respuesta positiva de hemaglutinación a partir del segundo sangrado

    High genetic variability of Alexandrium catenella directly detected in environmental samples from the Southern Austral Ecosystem of Chile

    No full text
    Chilean waters are often affected by Alexandrium catenella, one of the leading organisms behind Harmful Algae Blooms (HABs). Genetic variability for this species are commonly carried out from cultured samples, approach that may not accurately quantify genetic variability of this organism in the water column. In this study, genetic variability of A. catenella was determined by sequencing the rDNA region, in water samples from the Canal Puyuhuapi (South Austral Ecosystem of Chile). A. catenella was detected in 8,8% of samples analysed. All sequences obtained were A. catenella (Tamara complex group I), with three highly frequent haplotypes (34%), and twenty new haplotypes. These haplotypes increase the genetic variability from 2.8% to 3.14% in this area. Through this new method, genetic determination of A. catenella can accurately be monitored and ecological studies of this species can be implemented.info:eu-repo/semantics/acceptedVersio

    Study of the ichthyotoxic microalga Heterosigma akashiwo by transcriptional activation of sublethal marker Hsp70b in Transwell co-culture assays.

    Get PDF
    Despite the advance of knowledge about the factors and potential mechanisms triggering the ichthyotoxicity in microalgae, these remain unclear or are controversial for several species (e.g. Heterosigma). Neither typical toxicity tests carried out with cell extracts nor direct exposure to harmful species were proved suitable to unravel the mechanism of harm. Ichthyotoxic species show a complex harmful effect on fish, which is mediated through various mechanisms depending on the species. In this work, we present a method to study sub-lethal effects triggered by reactive oxygen species of a population of harmful algae in vivo over a fish cell line. To that end, Transwell co-cultures in which causative and target species are separated by a 0.4 μm pore membrane were carried out. This allowed the evaluation of the effect of the released molecules by cells in a rapid and compact test. In our method, the harmful effect was sensed through the transcriptional activation of sub-lethal marker Hsp70b in the CHSE214 salmon cell line. The method was tested with the raphidophyte Heterosigma akashiwo and Dunaliella tertiolecta (as negative control). It was shown that superoxide intracellular content and its release are not linked in these species. The methodology allowed proving that reactive oxygen species produced by H. akashiwo are able to induce the transcriptional activation of sub-lethal marker Hsp70b. However, neither loss of viability nor apoptosis was observed in CHSE214 salmon cell line except when exposed to direct contact with the raphidophyte cells (or their extract). Consequently, ROS was not concluded to be the main cause of ichthyotoxicity in H. akashiwo

    Antibacterial and antifungal properties of electrospun recycled PET polymeric Fibers functionalized with zinc oxide nanoparticles

    No full text
    Currently, to reduce the environmental problems associated with plastic waste, methods are being sought to use this waste as raw materials in different applications, such as fibers. In addition, to improve these materials and provide different properties, nanoparticles (NPs) are incorporated. In the present work, polymeric fibers made of recycled polyethylene terephthalate (r-PET) from post-consumer water bottles, functionalized with 0%, 1.5%, 3% and 6% zinc oxide nanoparticles (ZnO-NPs) in function of r-PET weight, were elaborated to evaluate their antibacterial and antifungal characteristics. The ZnO-NPs were synthesized by the solvothermal method, obtaining particles with a mean diameter of 38.15 nm, while the fibers were obtained by electrospinning with a diameter range between 200–5000 nm. The functionalized fibers were carried out against Escherichia coli and Bacillus subtilis through the agar diffusion method, obtaining the highest inhibition halo at 6% w/w ZnO-NPs, being 26.5 mm and 34.25 mm, respectively. In addition, the same method was used to evaluate the antifungal activity of Penicillium s.p. and Fusarium graminearum, observing antifungal properties due to the presence of nanoparticles in the fibers

    An architectural perspective of vitamin D responsiveness

    No full text
    Vitamin D serves as a principal modulator of skeletal gene transcription, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiological responsiveness requires combinatorial control where coregulatory proteins determine the specificity of biological responsiveness to physiological cues. It is becoming increasingly evident that the regulatory complexes containing the vitamin D receptor are dynamic rather than static. Temporal and spatial modifications in the composition of these complexes provide a mechanism for integrating regulatory signals to support positive or negative control through synergism and antagonism. Compartmentalization of components of vitamin D control in nuclear microenvironments supports the integration of regulatory activities, perhaps by establishing thresholds for protein activity in time frames that are consistent with the execution of regulatory signaling
    corecore