95 research outputs found

    Characterising the agriculture 4.0 landscape - Emerging trends, challenges and opportunities

    Get PDF
    ReviewInvestment in technological research is imperative to stimulate the development of sustainable solutions for the agricultural sector. Advances in Internet of Things, sensors and sensor networks, robotics, artificial intelligence, big data, cloud computing, etc. foster the transition towards the Agriculture 4.0 era. This fourth revolution is currently seen as a possible solution for improving agricultural growth, ensuring the future needs of the global population in a fair, resilient and sustainable way. In this context, this article aims at characterising the current Agriculture 4.0 landscape. Emerging trends were compiled using a semi-automated process by analysing relevant scientific publications published in the past ten years. Subsequently, a literature review focusing these trends was conducted, with a particular emphasis on their applications in real environments. From the results of the study, some challenges are discussed, as well as opportunities for future research. Finally, a high-level cloud-based IoT architecture is presented, serving as foundation for designing future smart agricultural systems. It is expected that this work will positively impact the research around Agriculture 4.0 systems, providing a clear characterisation of the concept along with guidelines to assist the actors in a successful transition towards the digitalisation of the sectorinfo:eu-repo/semantics/publishedVersio

    Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions

    Get PDF
    Funding Information: Funding: This work received funding support from national funds from Fundação para a Ciência e a Tecnologia, I.P. (FCT), Portugal, through the research units UIDB/04035/2020 (GeoBioTec) and UIDB/00239/2020 (CEF). Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g−1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g−1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 µg g−1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusions.publishersversionpublishe

    Elemental Composition of Commercial Herbal Tea Plants and Respective Infusions

    Get PDF
    This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g-1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g-1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 g g-1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusionsinfo:eu-repo/semantics/publishedVersio

    The tolerance of eucalyptus globulus to soil contamination with arsenic

    Get PDF
    UID/FIS/04559/2020The contamination of abandoned mining areas is a problem worldwide that needs urgent attention. Phytoremediation emerges as a successful method to extract different contaminants from the soil. In this context, Eucalyptus globulus plants growing in soils artificial contaminated with arsenic (As) were used to access its phytoremediation capabilities. The effects of As on photosynthetic performance were monitored through different physiological parameters, whereas the uptake and translocation of As and the putative effects on calcium, iron, potassium, and zinc levels on plants were evaluated by X-ray fluorescence analysis. Root system is the major accumulator organ, while the translocation to the above-ground organs is poor. In the end of the experiment, the root biomass of plants treated with 200 μg As mL−1 is 27% and 49.7% lower than equivalent biomass from plants treated with 100 μg As mL−1 and control plants, respectively. Each plant can accumulate 8.19 and 8.91 mg As after a 6-month period, when submitted to 100 As and 200 As, respectively. It seems to exist an antagonistic effect of As on Zn root uptake by E. globulus. In general, the tested concentrations do not influence negatively plant metabolism, indicating that this species is suitable for plantation in contaminated areas.publishersversionpublishe

    Elemental composition of algae-based supplements by energy dispersive X-ray fluorescence

    Get PDF
    The aim of this study is to evaluate the elemental composition of fifteen algae-based supplements commonly sold in the Portuguese market, by energy dispersive X-ray fluorescence. Despite the fact that the majority of Kelp samples were a good source of iodine, the levels observed might well contribute to an excess in the human body, which can cause dysfunction of the thyroid gland. Furthermore, the presence of lead in Sea spaghetti, Arame, Hijiki and Wakame caused a considerable risk to public health vis a vis possible ingestion of a high daily dose. Regarding arsenic, great variability was observed in all the samples with concentrations equal to or above 60 μg/g in the case of Arame, KelpJ and Hijiki. Although algae mainly accumulate organic arsenic, some also contain high levels of its inorganic form, as is commonly pointed out for Hijiki. Thus, regular ingestion of these supplements must also take into account the mentioned facts. There is no doubt that these supplements are also good sources of other nutrients, but the lack of accurate regulations and control should alert consumers to avoid indiscriminate use of these types of productsinfo:eu-repo/semantics/publishedVersio

    A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora

    Get PDF
    Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 C and at two supra-optimal temperatures (37 C, 42 C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 C. Although eCO2 helped to release stress, 42 C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42 C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 C) than previously assumed.info:eu-repo/semantics/publishedVersio

    Overexpression of water-responsive genes promoted by elevated CO2 reduces ROS and enhances drought tolerance in Coffea species

    Get PDF
    Drought is a major constraint to plant growth and productivity worldwide and will aggravate as water availability becomes scarcer. Although elevated air [CO2] might mitigate some of these effects in plants, the mechanisms underlying the involved responses are poorly understood in woody economically important crops such as Coffea. This study analyzed transcriptome changes in Coffea canephora cv. CL153 and C. arabica cv. Icatu exposed to moderate (MWD) or severe water deficits (SWD) and grown under ambient (aCO2) or elevated (eCO2) air [CO2]. We found that changes in expression levels and regulatory pathways were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (DEGs). eCO2 attenuated the impacts of drought in the transcripts of both genotypes but mostly in Icatu, in agreement with physiological and metabolic studies. A predominance of protective and reactive oxygen species (ROS)-scavenging-related genes, directly or indirectly associated with ABA signaling pathways, was found in Coffea responses, including genes involved in water deprivation and desiccation, such as protein phosphatases in Icatu, and aspartic proteases and dehydrins in CL153, whose expression was validated by qRT-PCR. The existence of a complex post-transcriptional regulatory mechanism appears to occur in Coffea explaining some apparent discrepancies between transcriptomic, proteomic, and physiological data in these genotypes.info:eu-repo/semantics/publishedVersio

    Understanding the Impact of Drought in Coffea Genotypes: Transcriptomic Analysis Supports a Common High Resilience to Moderate Water Deficit but a Genotype Dependent Sensitivity to Severe Water Deficit

    Get PDF
    Water scarcity is the most significant factor limiting coffee production, although some cultivars can still have important drought tolerance. This study analyzed leaf transcriptomes of two coffee cultivars with contrasting physiological responses, Coffea canephora cv. CL153 and Coffea. arabica cv. Icatu, subjected to moderate (MWD) or severe water deficits (SWD). We found that MWD had a low impact compared with SWD, where 10% of all genes in Icatu and 17% in CL153 reacted to drought, being mainly down-regulated upon stress. Drought triggered a genotype-specific response involving the up-regulation of reticuline oxidase genes in CL153 and heat shock proteins in Icatu. Responsiveness to drought also included desiccation protectant genes, but primarily, aspartic proteases, especially in CL153. A total of 83 Transcription Factors were found engaged in response to drought, mainly up-regulated, especially under SWD. Together with the enrollment of 49 phosphatases and 272 protein kinases, results suggest the involvement of ABA-signaling processes in drought acclimation. The integration of these findings with complementing physiological and biochemical studies reveals that both genotypes are more resilient to moderate drought than previously thought and suggests the existence of post-transcriptional mechanisms modulating the response to drought.info:eu-repo/semantics/publishedVersio
    corecore