257 research outputs found

    Click Chemistry with Polymers, Dendrimers, and Hydrogels for Drug Delivery

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Pharmaceutical Research. The final authenticated version is available online at: https://doi.org/10.1007/s11095-012-0683-yDuring the last decades, great efforts have been devoted to design polymers for reducing the toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has been also taken from the inherent multivalency of polymers and dendrimers for the incorporation of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery and tissue engineering applications. In the long road to this successful story, pharmaceutical sciences have been accompanied by parallel advances in synthetic methodologies allowing the preparation of precise polymeric materials with enhanced properties. In this context, the introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction efficiency and product purity are significantly challenged. The purpose of this Expert Review is to discuss the impact of click chemistry in the preparation and functionalization of polymers, dendrimers, and hydrogels of interest in drug deliveryThis work was financially supported by the Spanish Ministry of Science and Innovation (CTQ2009-10963 and CTQ2009-14146-C02-02) and the Xunta de Galicia (10CSA209021PR and CN2011/037)S

    Peptide probes for proteases - innovations and applications for monitoring proteolytic activity.

    Get PDF
    Proteases are excellent biomarkers for a variety of diseases, offer multiple opportunities for diagnostic applications and are valuable targets for therapy. From a chemistry-based perspective this review discusses and critiques the most recent advances in the field of substrate-based probes for the detection and analysis of proteolytic activity both in vitro and in vivo

    Click to learn, learn to click: undergraduate synthetic organic chemistry experiments

    Get PDF
    The optimization of an undergraduate experiment for Organic Chemistry students is described to explore the concept of click chemistry. The preparation of a terminal fluorescent alkyne and an organic azide is reported consisting of simple steps. These are employed in the Cu(I)-catalized azide-alkyne cycloaddition to obtain a novel molecule containing a triazole ring whose characterization allows the students to practice a variety of techniques: NMR (1H, 13C, COSY and HSQC), melting point, thin layer chromatography, IR, fluorescence spectroscopy and mass spectrometry to confirm the structure of their obtained product. An alternative methodology in a one-pot reaction is also explored and a full laboratory manual provided.FQM-208. GlycoChemBio: Glycochemistry and Bioconjugatio

    Intracellular delivery of a catalytic organometallic complex

    Get PDF
    A homogeneous carbene-based palladium catalyst was conjugated to a cell-penetrating peptide, allowing intracellular delivery of catalytically active Pd complexes that demonstrated bioorthogonal activation of a profluorophore within prostate cancer cells

    Moving into the red - a near infra-red optical probe for analysis of human neutrophil elastase in activated neutrophils and neutrophil extracellular traps.

    Get PDF
    Neutrophils are the first immune cells recruited for defence against invading pathogens; however, their dysregulated activation and subsequent release of the enzyme human neutrophil elastase is associated with several, inflammation-based, diseases. Herein, we describe a FRET-based, tri-branched (one quencher, three fluorophores) near infrared probe that provides an intense OFF/ON amplified fluorescence signal for specific detection of human neutrophil elastase. The probe allowed selective detection of activated neutrophils and labelling of neutrophil extracellular traps
    corecore