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Abbreviations 

AIBN (azobisisobutyronitrile), ATRP (atom transfer radical polymerization), BPDS 

(bathophenanthroline disulphonated disodium salt), CA (contrast agent), CL (caprolactone), 

ConA (Concanavalin A), CPT (camptothecin), CuAAC [Cu(I)-catalyzed azide-alkyne 

cycloaddition], DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), DDS (drug delivery system), DIPEA 

(N,N-diisopropylethylamine), DMPA (2,2-dimethoxy-2-phenylacetophenone), DOX 

(doxorubicin), EPR (enhanced permeability and retention), GATG (gallic acid-triethylene 

glycol), LCST (lower critical solution temperature), LRP (living radical polymerization), NMP 

(N-methyl-2-pyrrolidone), MAPC (methacryloyloxyethyl phosphorylcholine), MMP (matrix 

metalloproteinase), bis-MPA [2,2-bis(hydroxymethyl)propionic acid], MRI (magnetic resonance 

imaging), MSC (mesenchymal stem cells), PAMAM [poly(amido amine)], PEI [poly(ethylene 

imine)], PEO [poly(ethylene oxide)], PEG [poly(ethylene glycol)], PIC (polyion complex), PLL 

(poly-L-lysine), PMA (propargyl methacrylate), PMDETA (N,N,N',N',N"-

pentamethyldiethylenetriamine), PMMA [poly(methyl methacrylate)], PNIPAM [poly(N-

isopropylacrylamide)], POEGA [poly(oligo(ethylene glycol) acrylate)], PPI [poly(propylene 

imine)], PS [poly(styrene)], PVA [poly(vinyl alcohol)], RAFT (reversible addition-fragmentation 

chain transfer), RGD (Arg-Gly-Asp), ROMP (ring-opening methathesis polymerization), ROS 

(reactive oxygen species), SPAAC (strain-promoted azide-alkyne cycloaddition), SPR (surface 

plasmon resonance), TBTA [tris(benzyltriazolylmethyl)amine], TEC (thiol-ene coupling), 

THPTA [tris(hydroxypropyltriazolylmethyl)amine], TMS (trimethylsilyl), TYC (thiol-yne 

coupling). 
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Abstract 

During the last decades, great efforts have been devoted to design polymers for reducing the 

toxicity, increasing the absorption, and improving the release profile of drugs. Advantage has 

been also taken from the inherent multivalency of polymers and dendrimers for the incorporation 

of diverse functional molecules of interest in targeting and diagnosis. In addition, polymeric 

hydrogels with the ability to encapsulate drugs and cells have been developed for drug delivery 

and tissue engineering applications. In the long road to this successful story, pharmaceutical 

sciences have been accompanied by parallel advances in synthetic methodologies allowing the 

preparation of precise polymeric materials with enhanced properties. In this context, the 

introduction of the click concept by Sharpless and coworkers in 2001 focusing the attention on 

modularity and orthogonality has greatly benefited polymer synthesis, an area where reaction 

efficiency and product purity are significantly challenged. The purpose of this Expert Review is 

to discuss the impact of click chemistry in the preparation and functionalization of polymers, 

dendrimers, and hydrogels of interest in drug delivery. 

 

 

Keywords: click chemistry; drug delivery; polymer; dendrimer; hydrogel 
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“The reaction must be modular, wide in scope, give very high yields, generate only 

inoffensive byproducts that can be removed by nonchromatographic methods, and be 

stereospecific (but not necessarily enantioselective). The required process characteristics 

include simple reaction conditions (ideally, the process should be insensitive to oxygen and 

water), readily available starting materials and reagents, the use of no solvent or a solvent that 

is benign (such as water) or easily removed, and simple product isolation. Purification - if 

required - must be by nonchromatographic methods, such as crystallization or distillation, and 

the product must be stable under physiological conditions… Click processes proceed rapidly to 

completion and also tend to be highly selective for a single product: we think of these reactions 

as being “spring-loaded” for a single trajectory”. H. C. Kolb, M. G. Finn and K. B. Sharpless. 

Angew. Chem., Int. Ed. 40: 2004-2021 (2001). 

 

INTRODUCTION 

Since the mid-1960s, great efforts have been devoted to the development of drug delivery 

systems (DDS) for the controlled administration of drugs (1). Encouraged by breakthroughs in 

the field [PEGylation, active targeting, enhanced permeability and retention (EPR) effect] and 

the need of more sophisticated materials and novel designs, chemists have perceived drug 

delivery as an attractive field to collaborate with colleagues in the pharmaceutical and medical 

sciences. Indeed, the ability of putting together small building blocks into larger structures has 

been at the core of evolution and inspired chemists in the search of more efficient processes with 

production of minimal waste (2). In this context, Sharpless and coworkers introduced in 2001 the 

concept of click chemistry in an effort to focus the attention on the easy production of properties 
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rather than on challenging structures (3). The idea behind click chemistry is to deliver new 

avenues for the preparation of useful materials from readily available building blocks and 

extremely efficient chemical transformations. During the last decade the click philosophy has 

received a warm welcome by researchers in different fields and inspired the publication of 

hundreds of papers in areas such as, materials and polymer science, nanotechnology, and drug 

delivery and the pharmaceutical sciences in general (4, 5, 6, 7). In a previous Expert Review, we 

have critically discussed the click concept, its advantages, uses and misuses, as well as its 

application for the preparation and functionalization of nanosized DDS (8). As the vast majority 

of these examples rely on the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (9, 10), a 

section dealing with the use of this reaction in bioconjugation was provided, covering the role of 

Cu in the structural damage of biomolecules, the use of Cu(I)-chelating ligands (Fig. 1), and the 

development of the Cu-free strain-promoted azide-alkyne cycloaddition (SPAAC) (11). More 

recently, a detailed perspective on the efficient application of CuAAC and SPAAC for the in 

vitro functionalization of biomacromolecules has been published by our group (12). 

 

Fig. 1 

 

During the last decades, a great deal of work has been devoted to adapt, modify, or tailor 

polymers for reducing drug toxicity, increasing drug absorption, and improving drug release 

profiles (13). These efforts have indeed benefited from the emergence of the click concept. Thus, 

although the main application of click chemistry originally envisaged by Sharpless and 

coworkers was oriented to drug discovery, the click concept has profoundly impacted polymer 
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synthesis, an area where reaction efficiency and product purity are significantly challenged (14). 

In this Expert Review a survey of the most recent applications of CuAAC and other click 

reactions, including Michael addition, Diels-Alder, thiol-ene coupling (TEC), and SPAAC for 

the preparation and functionalization of dendrimers, synthetic polymers, and hydrogels will be 

discussed with special emphasis on those examples of relevance in drug delivery. The review has 

been divided into the following sections: 

DENDRIMERS 

Synthesis of Dendrimers 

Periphery Functionalization 

CuAAC Functionalization with Carbohydrates 

CuAAC Functionalization with Peptides 

CuAAC Functionalization with Nucleotides 

CuAAC Functionalization with non-Naturally Occurring Molecules 

Periphery Functionalization by Click Chemistries other than CuAAC 

SYNTHETIC POLYMERS 

Polymer Synthesis: Linear Polymers 

Side Chain Functionalization of Polymers and Synthesis of Graft Copolymers 

End Group Functionalization of Polymers and Synthesis of Block Copolymers 

Preparation and Functionalization of Cyclic Polymers 

HYDROGELS 

Michel Addition in the Preparation of Hydrogels 

Diels-Alder Cycloaddition in the Preparation of Hydrogels 
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CuAAC and SPAAC in the Preparation of Hydrogels 
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DENDRIMERS 

Dendrimers are perfectly monodisperse macromolecules made of branched repeating units 

emerging from a central core, that are characterized by a high degree of functionality (15). In 

general, they have globular shape with diameters in the nanometer scale (ca. 1-20 nm), which 

makes them ideal candidates for bio- and nanotechnology applications (16). The branched 

architecture of dendrimers demands rigorous synthetic protocols for their preparation, which 

normally involve activation/growing steps and tedious purifications. In this context, it is not 

surprising that the preparations of some of the most successful dendritic scaffolds have relied on 

click reactions appeared before the click concept being proposed. This is for example the case of 

poly(amido amine) (PAMAM) (17) and poly(propylene imine) (PPI) (18) dendrimers, which rely 

on Michael additions in their growing steps, or glycerol dendrimers which use a dihydroxylation 

reaction as activation step (19). In this section we will focus the attention on reports that 

adopting the original paper by Sharpless (3) as source of inspiration have made significant 

contributions to the preparation and functionalization of dendrimers for drug delivery 

applications. 

 

Synthesis of Dendrimers 

The first application of CuAAC to the synthesis of dendrimers was reported in 2004 as a 

result of collaboration between the groups of Hawker, Voit, Fréchet, Sharpless, and Fokin (20). 

A convergent CuAAC-based approach was employed for the preparation of triazol dendrimers 

mimicking the earlier synthesis by Fréchet and Hawker developed in 1990 (21). CuAAC 

(CuSO4, ascorbate, t-BuOH-H2O) revealed to be a much more efficient methodology than the 
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originally reported nucleophilic substitution. Thus, not only stoichiometric amounts of azide and 

alkyne partners were employed, but also chromatographic purifications were avoided in most of 

the cases. Shortly after, a complementary CuAAC-based divergent synthesis of dendrimers was 

reported by the groups of Hawker and Wooley (22). 

Mutifunctionalized dendrimers represent one of the most interesting dendritic architectures 

for drug delivery. They offer the possibility of selectively localizing diverse functional molecules 

(e.g., drugs, targeting ligands, imaging agents) while exploiting their inherent multivalency. In 

this regard, a collaboration between the groups of Finn, Fokin, Sharpless, and Hawker 

demonstrated the usefulness of CuAAC for the preparation of Janus-type dendrimers, where 

protected and unprotected 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons were 

connected through their focal points via triazole linkages [Cu(PPh3)3Br, DIPEA, THF, 50 ºC] 

(Fig. 2a) (23). In addition, an adequate selection of protecting groups allowed the stepwise 

CuAAC functionalization of the resulting dendrimers (CuSO4, ascorbate, THF-H2O) with 16 

mannose units on one side of the dendrimer, and 2 coumarin dyes on the other. The resulting 

glycodendrimer showed a 240-fold increase affinity towards lectin Concanavalin A (ConA) in 

hemagglutination experiments compared to monomeric mannose which entails a rich future for 

these structures in antiadhesive therapy. In a similar fashion, the group of Sanyal has reported the 

preparation of bifunctional Janus-type dendrimers based on a Diels-Alder cycloaddition 

(benzene, 85 ºC) between furan-functionalized Fréchet dendrons and maleimide-functionalized 

bis-MPA dendrons (Fig. 2b) (24). 

Another interesting approach for the selective localization of various functionalities in 

dendrimers relies on the use of repeating units of the type AB2C carrying three orthogonal 
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handles. As described by Malkoch and coworkers, this strategy has allowed the preparation of 

bifunctional dendrimers of generation 1-3 (G1-G3) bearing up to 24 hydroxyl groups at the 

periphery and 21 internal alkyne/azide groups distributed throughout the dendrimer backbone, 

which were amenable for further functionalization by means of CuAAC (Fig. 2c) (25). 

 

Fig. 2 

 

Since the synthesis of dendrimers demands a high degree of control over activation and 

growing steps, chemists have found in this process an excellent test bank for the assessment of 

emerging click technologies. This has been the case for example for the thiol-ene coupling 

(TEC), firstly exploited by Hawker and coworkers in the dendrimer arena starting from a tris-

alkene triazine core and 1-thioglycerol (26). Reactions were carried out in bulk (UV light, 365 

nm) without the need of removal of oxygen, and required only 1.5 equiv of thiol partner. The 

absence of byproducts allowed easy purifications by precipitation up to G4. In a similar fashion, 

the group of Stenzel has reported the preparation of related thio-ether dendrimers by means of 

thiol-yne coupling (TYC) (UV light, 365 nm, DMF) (27). Interestingly, as alkynes allow the 

addition of two thiols, dendrimers with a higher degree of functionalization could be readily 

prepared through this approach. This way, three generations of thio-ether dendrimers 

peripherally decorated with carboxylic acids were prepared and their potential in drug delivery 

illustrated by complexation to cis-dichlorodiamineplatinum(II). 

Hawker, Albertazzi, and coworkers have more recently reported a combination of 

nucleophilic ring-opening of epoxides by amines and TEC (UV light, 365 nm, MeOH) or TYC 
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[DMPA (2,2-dimethoxy-2-phenylacetophenone), MeOH, UV light; or AIBN, MeOH, 80 ºC] as a 

useful methodology for the preparation of dendrimers and PEG-dendritic block copolymers 

internally functionalized with hydroxyl groups (28, 29). These examples are unique in the 

application of two different click reactions for both the activation and growing steps. The 

covalent attachment of hydrophobic drugs/imaging agents at these internal hydroxyl groups was 

envisaged as an effective way to provide conjugates with solubility and biocompatibility 

properties similar to those of the unconjugated dendritic scaffold. 

As seen in Fig. 3, click chemistry has also revealed very useful for the accelerated 

preparation of dendrimers from repeating units carrying orthogonal functionalities. Such a 

strategy results in a significant reduction of synthetic effort since intermediate activation steps 

are avoided and hence, every step translates into a new dendrimer generation. A pioneering 

example in this field was reported back in 2001 by the group of Caminade and Majoral for the 

synthesis of phosphorous-dendrimers involving hydrazone linkages in one of the growing steps 

(Fig. 3) (30, 31). More recently, similar strategies have been implemented by the groups of 

Hawker and Malkoch for the preparation of benzyl ether and bis-MPA dendrimers combining 

CuAAC (CuSO4, ascorbate, THF-H2O, 40 ºC) and etherification/esterification steps (Fig. 3) (32). 

It has not been until recently, however, that two different click reactions have been combined for 

this purpose by the group of Kakkar [CuAAC (CuSO4, ascorbate, THF-H2O, microwaves, 65 ºC) 

and Diels-Alder (EtOAc, 50 ºC)] (Fig. 3) (33). This principle has been further pushed to the limit 

by the groups of Malkoch and Hawker by synthesizing a 6th generation dendrimer in a single day 

by combination of TEC (UV light, 365 nm, THF) and CuAAC (CuSO4, ascorbate, THF-H2O) 

reactions (Fig. 3) (34). 
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Fig. 3 

 

Periphery Functionalization 

As a consequence of their branched structure, dendrimers display a high number of 

functional groups at their periphery, which strongly determine their solubility and biological 

properties. The development of efficient strategies for their peripheral functionalization is 

therefore of great interest for advanced drug delivery applications. The group of Hawker showed 

in 2005 the usefulness of CuAAC for this purpose by the efficient functionalization of various 

alkynated dendritic scaffolds (benzyl ether, bis-MPA, PPI) with a small library of azides (35). As 

opposed to traditional functionalization procedures, only a slight excess of reactive azides was 

necessary under the reported conditions, being high dilution the only required precaution to 

avoid acetylene homocoupling. 

CuAAC Functionalization with Carbohydrates 

The high versatility of CuAAC has been exploited for the decoration of dendrimers with 

unprotected ligands of relevance in drug delivery. Carbohydrates regulate a myriad of biological 

and pathological processes in Nature. Recognition events such as fertilization, pathogen 

invasion, toxin and hormone mediation, and cell-cell interactions rely on multivalent 

carbohydrate-receptor interactions (36). This cluster glycoside effect has prompted the 

development of glycodendrimers and other synthetic multivalent glycoconjugates with the ability 

to interact with target lectins and hence, to promote/inhibit natural carbohydrate-receptor 

interactions (37). Pioneering examples on the preparation of glycodendrimers from unprotected 
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carbohydrates came from the groups of Liskamp/Pieters (38), Finn/Fokin/Sharpless/Hawker (23) 

(Fig. 2a), and Fernandez-Megia/Riguera (Fig. 4) (39, 40). It is worth to note that, while the first 

two reports relied on alkynated dendrimers, the group of Fernandez-Megia and Riguera 

employed gallic acid-triethylene glycol (GATG) dendrimers incorporating terminal azide groups 

on their periphery. This way, glyco-dendrimers and PEG-dendritic block copolymers were 

efficiently prepared while ruling out the possibility of dendrimer dimerization. Typical reaction 

conditions involved a small excess of alkynated carbohydrates (CuSO4, ascorbate, t-BuOH-H2O) 

and isolation of the resulting functionalized dendrimers by ultrafiltration. The study of the 

interaction of these glycodendrimers with lectins by means of surface plasmon resonance (SPR) 

shed valuable information on the interpretation of multivalent carbohydrate recognition, 

highlighting the importance of the density of lectin clusters on biological surfaces as a potential 

source of selectivity in drug delivery (Fig. 4) (41). 

 

Fig. 4 

 

CuAAC Functionalization with Peptides 

Peptides are another interesting class of ligands that have been exploited for the 

functionalization of dendrimers. Peptide-dendrimer conjugates constitute valuable tools for the 

analysis of a variety of multivalent processes such as bacteria adhesion, cell proliferation, and 

allergic responses. For instance, Arg-Gly-Asp (RGD) tripeptide and cyclo(Arg-Gly-Asp-D-Phe-

Val) [c(RGDfV)] pentapeptide are known to bind integrin αvβ3, a membrane protein that plays an 

important role in tumor angiogenesis and metastasis (42). The group of Liskamp has investigated 
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the CuAAC conjugation of RGD and c(RGDfV) peptides to dendrimers (CuSO4, ascorbate, 

microwaves, THF-H2O, 100 ºC) and studied their increased affinity towards the αvβ3 integrin 

receptor (43, 44). Functionalization with peptides proved to be more troublesome than with 

carbohydrates (38), as very low yields were obtained for the final conjugates in many cases. The 

same authors have also found that 111In-labeled RGD-dendrimers specifically exhibited an 

enhanced in vivo uptake into integrin αvβ3 overexpressing tumors (44). Other biologically 

relevant peptides, such as antimicrobial magainin I and II, or Leu-enkephalin, have been 

successfully attached to the surface of dendrimers using similar CuAAC strategies (45). 

CuAAC Functionalization with Nucleotides 

Nucleotide ligands have been also installed on the surface of dendrimers. For instance, the 

group of Jacobson has recently decorated the surface of PAMAM dendrimers with nucleotide 

antagonists of the P2Y1 receptor by means of CuAAC (CuSO4, ascorbate, THF-H2O) in order to 

inhibit ADP-induced platelet aggregation (46). Interestingly, although no significant multivalent 

effect was observed, the affinity of these triazol-containing derivatives was higher than the 

corresponding amide-linked conjugates, indicating a positive effect of the triazole linker on 

activity. In a related work, the same research group has combined CuAAC (CuSO4, ascorbate, t-

BuOH-H2O) and amide bond formation to prepare novel PAMAM conjugates containing 

agonists of the P2Y14 and the antiinflammatory A3 adenosine receptors (47). 

CuAAC Functionalization with non-Naturally Occurring Molecules 

CuAAC has been also used to attach non-naturally occurring molecules to the periphery of 

dendrimers. From a drug delivery perspective, ionic residues are interesting ligands that can lead 

to useful applications when presented onto multivalent scaffolds. For instance, cationic ligands 
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are known to bind nucleic acids and result into gene delivery vehicles when multivalently 

displayed onto polymers and dendrimers (48). On the other hand, anionic polymers have been 

described as mimetics of glycosaminoglycans with applications in cancer therapy, as 

antiinflamatory agents, or inhibitors of amyloid aggregation (49). In addition, polyionic species 

have been used in the preparation of electrostatic complexes such as, micelles and assemblies 

with significant impact in biotechnology and drug delivery (50). In this context, the group of 

Fernandez-Megia and Riguera has reported the synthesis of anionic dendrimers by means of 

CuAAC (51). In a similar fashion to their previously described work on glycodendrimers (39, 

40), azide-decorated GATG dendrimers and PEG-b-GATG block copolymers were 

functionalized under aqueous conditions with sulfated, sulfonated, and carboxylated alkynes 

(CuSO4, ascorbate, t-BuOH-H2O). This CuAAC strategy was revealed more efficient than 

traditional coupling methods (such as amide and sulfation procedures) which usually result in 

non-homogeneous decoration patterns. Interestingly, incubation of a sulfated PEG-b-GATG 

copolymer of G3 with equimolecular amounts of an oppositely charged poly-L-Lysine (PLL) led 

to polyion complex (PIC) micelles as potential drug delivery systems. These micelles showed an 

improved stability compared to related systems from linear block copolymers (51). Similar 

CuAAC conditions have been more recently applied by Haag and coworkers for the anionic 

functionalization of dendritic polyglycerols that have been studied as L-selectin inhibitors (52). 

In recent years, dendritic polymers carrying paramagnetic ions have found application as 

contrast agents (CA) in magnetic resonance imaging (MRI) (53). Particularly interesting is the 

use of these macromolecular CA in quantitative studies of microvessels and for prolonged 

angiographies, both of interest in cancer diagnosis. From a synthetic point of view, one of the 
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major difficulties in the preparation of dendritic CA for MRI is their complete surface 

functionalization with metal chelates, which often leads to mixtures of compounds with varying 

degrees of substitution. This way, not only the advantage of starting from monodisperse 

materials is lost, but the final products become strongly batch-dependent. In this regard, the 

group of Fernandez-Megia and Riguera has recently reported the advantage of using CuAAC 

(CuSO4, ascorbate, t-BuOH-H2O) for this goal by allowing the complete incorporation of 

preformed Gd chelates onto the dendritic surface of PEG-b-GATG block copolymers in very 

high yields (54). The analysis of the physical and pharmacokinetic properties in vitro and in vivo 

of this new family of dendritic CA revealed them as a promising platform for the development of 

CA for MRI. 

The properties of PEG as antifouling agent to inhibit protein adhesion as well as for 

increasing the aqueous solubility and circulation times in the blood stream of covalently bound 

molecules/nanosystems are well known (55). Shabat and coworkers have reported the 

functionalization of self-immolative dendrimers with PEG by means of CuAAC (CuSO4, Cu 

wire, TBTA, DMF) to increase their water solubility and prevent aggregation under aqueous 

conditions (56, 57). A PEGylated dendritic pro-drug of G2 with four molecules of the anticancer 

agent camptothecin (CPT) was prepared and the release of the drug demonstrated by triggering 

with penicillin-G-amidase (Fig. 5). Cell-growth inhibition assays demonstrated increased toxicity 

of the dendritic pro-drug upon incubation with the enzyme. 

 

Fig. 5 
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Periphery Functionalization by Click Chemistries other than CuAAC 

The above examples highlight the impact and utility of CuAAC in the synthesis and 

functionalization of dendrimers. It must be pointed out, however, that in some instances, Cu 

contamination might preclude the use of the final conjugates in biological systems (12). This has 

been illustrated by Weck and coworkers in the functionalization of azide-decorated PAMAM 

dendrimers with an alkynated PEG derivative (58). In this example, these authors demonstrated 

that the use of CuSO4/ascorbate/t-BuOH-H2O as CuAAC coupling conditions resulted in 

dendrimers containing up to 5000 ppm of Cu, despite extensive purification protocols 

(extraction, dialysis, chromatography). The use of the ligand BPDS along with CuI allowed the 

authors to reduce the final Cu content down to 70 ppm, while substitution of CuI for a Cu wire 

showed a further decrease to only 40 ppm. In order to completely avoid Cu contamination in this 

case, the authors decided to move from CuAAC to the Cu-free SPAAC alternative (11) by the 

use of a cyclooctyne-PEG derivative. 

To the best of our knowledge, no relevant examples on the use of CuAAC for the 

conjugation of drugs to dendritic scaffolds have been reported up to date. On the other hand, 

alternative click reactions such as the formation of hydrazones and Michael addition are firmly 

established technologies for this goal. In a seminal report by the groups of Fréchet and Szoka, 

these authors described the use of hydrazone linkages to conjugate doxorubicin (DOX) onto 

PEGylated biodegradable Janus-type polyester (bow-tie) dendrimers (Fig. 6) (59). Interestingly, 

the hydrazone linkage not only provided a straightforward method for loading DOX, but it also 

allowed its controlled release under the acidic conditions at the endosome. Interestingly, while in 

vitro experiments showed the DOX-dendrimer conjugate to be 10 times less toxic than free DOX 



Lallana Page 18 

 

Clicking Polymers for Drug Delivery 

 

towards C-26 cultured cells, in vivo experiments in mice revealed improved circulation half-life 

(31 h vs 10 min) and enhanced drug uptake (9 times higher) for the conjugate. Also, efficacy 

studies showed that a single intravenous injection of the DOX-dendrimer conjugate (20 mg/kg 

DOX after 8 days of tumor implantation) caused complete tumor regression with a 100% 

survival of mice specimens over a 60-day experiment, in a similar fashion to FDA-approved 

liposomal drug carrier Doxil®. Additional advantages of this bow-tie dendrimer conjugate are 

enhanced storage stability and ease of formulation. 

 

Fig. 6 

 

More recently, Haag and coworkers have relied on the Michael addition of thiols to 

maleimides for the conjugation of enzymatically cleavable anticancer pro-drugs onto dendritic 

polyglycerols (60). In this regard, self-immolative dendrimers based on para-aminobenzyloxy-

carbonyl coupled to Phe-Lys dipeptide or to D-Ala-Phe-Lys tripeptide were prepared and used 

for DOX and methotrexate conjugation, respectively. The selected peptide linkers were chosen 

based on their enzymatic cleavage by cathepsin B, a protease overexpressed in several tumor 

types. Evaluation of these dendrimer-drug conjugates revealed no beneficial effect for DOX 

upon culture with pancreatic or mammalian carcinoma tumor cell lines (probably as a result of 

inefficient cellular uptake), but substantial improvement in antiproliferative activity for the 

methotrexate-dendrimer conjugate. 
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SYNTHETIC POLYMERS 

The concept of click chemistry has been defined by Sharpless and coworkers over three 

main lines (3): (i) the production of properties through efficient transformations rather than 

challenging structures, (ii) the use of readily available starting materials, and (iii) the final 

materials should be easy to purify. Interestingly, these three same commandments have also been 

the driving force of polymer science since its very beginning. Indeed, polymer industry has 

prospered by manufacturing functional materials from easily accessible monomers using highly 

efficient chemical processes. It is not surprising therefore that polymer scientists have embraced 

the concept of click chemistry with enthusiasm, as reflected by the large number of reviews 

dealing with polymers and click procedures appeared in the literature since the original click 

report (14). 

In the following sections, attention will be focused on the application of click chemistry for 

the synthesis and functionalization of linear, star, and branched polymers of interest in drug 

delivery. Examples dealing with the use of click procedures with polymeric nanosized DDS 

(which arise from the ability of polymers to aggregate in solution) have been already surveyed in 

a previous Expert Review (8) and hence are not covered herein. 

 

Polymer Synthesis: Linear Polymers 

The first examples of linear polymers prepared by CuAAC were published by Fokin, Finn, 

and coworkers (61) and by the group of van Maarseveen and Reek (62). These pioneering works 

within materials science (discovery of metal adhesives and fluorene-based conjugated polymers, 

respectively) were soon followed by a report from the group of Arora on the preparation of 
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peptidomimetic oligomers, which represent the first biologically relevant polymers prepared by 

CuAAC (63). In this work, advantage was taken from the planar and polarized structure of 

triazols to prepare oligomers with similar properties to peptides but improved in vivo stability. 

Since that seminal work, several other groups have reported the preparation of a number of 

peptidomimetics by means of CuAAC (64). 

Probably, the most important contribution to the field of drug delivery using linear 

polymers synthesized by CuAAC has been carried out by the group of Reineke (65, 66, 67, 68). 

In this series of reports, trehalose or cyclodextrin diazide monomers have been copolymerized 

with linear oligoamine monomers incorporating two terminal alkyne units (Fig. 7a). While the 

presence of carbohydrates was envisioned to grant biocompatibility, water solubility, and 

stability against aggregation, the oligoamine monomers facilitated DNA complexation and 

interaction with cell surfaces. Indeed, the carbohydrate-oligoamine copolymers prepared this 

way exhibited low cytotoxicity and facilitated a high cellular uptake and gene expression in 

HeLa and H9c2(2-1) cells. 

Alternative click reactions traditionally employed in the preparation of synthetic polymers 

such as, Michael addition or the ring-opening of epoxides, have recently found application in 

interesting drug delivery programs. In an illustrative example, Rege, Kane, and coworkers have 

prepared a library of non-viral gene delivery vehicles via a combinatorial approach. By taking 

advantage of the clean reaction between the epoxide groups at diglycidyl ethers and the terminal 

amine groups at several linear oligoamines, a total of eighty copolymers were synthesized in 

parallel (69) (Fig. 7b). After primary screening and in vitro transfection, a polymer with 
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significantly higher transfection activity and lower cytotoxicity than poly(ethylene imine) (PEI) 

could be identified. 

 

Fig. 7 

 

Side Chain Functionalization of Polymers and Synthesis of Graft Copolymers 

The ability to efficiently prepare polymers functionalized at the side chains is considered of 

great importance in polymer science. A typical approach to this goal involves the preparation of 

"specialized" monomers, as those bearing carbohydrates or peptides of interest in biotechnology, 

for their subsequent polymerization. However, such a strategy has traditionally resulted 

troublesome or led to ill-defined monomeric species. In addition, the reactive functional groups 

typically found in carbohydrates and peptides often result incompatible with polymerization 

conditions or lead to undesired spontaneous polymerizations of the monomers. As a result, it is 

not surprising that the incorporation of different functionalities in a single polymer backbone has 

attracted the interest of polymer chemists during the last decade. 

An alternative strategy for the functionalization of the side chains of polymers involves the 

polymerization of monomers carrying adequate handles for subsequent functionalization through 

efficient click processes. In this case, the selection of the click reaction results crucial to avoid 

again interference of the reactive handles with polymerization mechanisms, as early illustrated 

by the group of Binder when combining CuAAC and the ring-opening methathesis 

polymerization (ROMP) (70). All attempts to polymerize an alkynated 7-oxynorbornene 
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derivative led to undesired broad molecular weight distributions, probably due to competing 

reactivity of the acetylene group with the ROMP catalyst. 

The first successful polymerization and subsequent CuAAC side chain functionalization of 

a linear polymer that was reported without the need of intermediate activation steps was 

published by Emrick and coworkers in 2005 (71). Copolymers prepared from ε-caprolactone 

(CL) and α-propargyl-δ-valerolactone were successfully functionalized with an azide-containing 

PEG and RGD peptide under aqueous conditions (CuSO4, ascorbate, acetone-H2O, 80 ºC). 

Interestingly, incubation of the resulting PEGylated graft copolymer (5 mg/mL) with L929 

mouse fibroblast showed no qualitative change in cell monolayer morphology. In addition, the 

percentage of hemolysis of human red blood cells induced by the graft copolymer was 

comparable to that of the PEG precursor. Such results suggest a good biocompatibility for these 

amphiphilic copolymers, and highlight the potential of CuAAC for the functionalization of 

polymers for drug delivery and other bioapplications. 

In addition to the above example, a range of different polymer backbones such as, 

polyoxazolines, polyisocyanides, and linear polypeptides among others, have been successfully 

functionalized using CuAAC (6). Among these polymers, those prepared via free radical 

polymerizations have received the greatest impact by the application of CuAAC. Pioneering 

work in this field has been done by Matyjaszewski and coworkers, in which monomers 

containing acetylene and azido groups were polymerized via ATRP (72). Interestingly, while 

poly(3-azidopropylmethacrylate) could be prepared with good control over polymerization, 

propargyl methacrylate (PMA) resulted in polymers with high polydispersity, multimodal 

molecular weight distributions, and cross-linked networks, probably due to an undesired 
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participation of the alkyne group in the polymerization. In an effort to solve this inconvenience, 

Haddleton and coworkers decided to work with protected PMA monomers [3-

(trimethylsilyl)propargyl (TMS-PMA)] which after polymerization by ATRP, were deprotected 

and functionalized with α-mannose and α-galactose azido derivatives by CuAAC [Cu(PPh3)3Br, 

Et3N, DMSO] (73). The resulting glycopolymers showed a strong affinity for Con A and Ricinus 

Communis agglutinin lectins with affinities which depended on the density of the corresponding 

sugar, revealing the potential of this synthetic approach for the preparation of libraries of 

biologically relevant glycopolymers. 

The polymerization of monomers incorporating unprotected alkyne groups via living 

radical polymerizations (LRP) still remains elusive, with very few examples reported in the 

literature (74, 75). A very elegant alternative to the use of protecting groups was reported by 

Haddleton, Mantovani, and coworkers in 2008 by means of a simultaneous CuAAC/ATRP of 

PMA using CuBr/iminopyridine as catalytic system for both reactions (Fig. 8a) (76). 

Interestingly, these authors found that the relative kinetics of CuAAC and ATRP could be tuned 

by the selection of the solvent, with the cycloaddition proceeding much faster than the 

polymerization in toluene or at equal rates in DMSO. In any case, the polydispersity indexes of 

the resulting polymers were in the range 1.1-1.3, in agreement with a controlled polymerization. 

Among the ligands that were attached by CuAAC, it is worth to mention an unprotected azide 

functionalized mannose which reveals this approach with a promising future in drug delivery and 

other bioapplications, especially if aqueous reaction conditions were developed. 

 

Fig. 8 
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In a similar fashion, the group of Emrick has prepared polymeric phosphorylcholine-

camptothecin conjugates via a one-pot ATRP/CuAAC protocol (77). These authors observed that 

under the conditions employed for the polymerization of methacryloyloxyethyl 

phosphorylcholine (MAPC) and TMS-PMA (CuBr, bipyridine, DMSO-MeOH), deprotection of 

the TMS groups occurred which allowed the in situ CuAAC functionalization of the polymer 

with various azido-functionalized CPT to yield statistic zwitterionic copolymers (Fig. 8b). These 

ionic drug-polymer conjugates showed excellent water solubility thanks to the unique properties 

of MAPC, with no aggregation being observed even at CPT loadings up to 14% in weight. In 

addition, the authors proved that the rate of drug release could be tailored by controlling the 

nature of the linker between the azide group and the CPT core. Interestingly, although IC50 

values of these conjugates were higher than native CPT, the fact that the PMA-MAPC backbone 

showed no apparent toxicity envisages this strategy as an efficient approach in the design of 

water-soluble polymeric supports for the delivery of highly hydrophobic drugs. 

As mentioned above, over the past decades several click reactions have been extensively 

employed for the side chain functionalization of polymers. Among them, the Michael addition of 

thiols to α,β-unsaturated systems and the formation of hydrazones have received special attention 

in the drug delivery arena. As an exhaustive analysis of this literature falls outside the scope of 

this Expert Review, interested readers are referred to specialized reviews (78) (79). With regard 

to emerging click technologies, TEC has recently attracted most of the efforts of polymer 

chemists. The first successful example on the application of TEC for the side chain 

functionalization of polymers was reported by Schlaad and coworkers with polyoxazolines (80). 
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The polymerization of 2-(3-butenyl)-2-oxazoline resulted mild enough to allow the complete 

preservation of the alkene groups which were subsequently functionalized via TEC (303 nm, 

THF-MeOH) in a very efficient way.  

The intrinsic orthogonality displayed by click reactions can be exploited for the 

simultaneous decoration of polymers with different molecules of interest. This strategy pioneered 

by the group of Hawker in 2005 was initially tested for the dual functionalization of polymers via 

CuAAC and esterification reactions [CuBr(PPh3)3, DIPEA, THF] (Fig. 9a) (81). Though the 

synthesis of esters does not comply with the click philosophy, this first report illustrated the 

advantage of combining precise chemistries in this field. Application of the same principle was 

later reported by Weck and coworkers for the simultaneous click functionalization of a 

poly(norbornene) with a nucleoside and biotin by means of CuAAC and hydrazone linkages 

(CuSO4, ascorbate, DMF or DMSO, 25 ºC) (Fig. 9b) (82). 

 

Fig. 9 

 

End Group Functionalization of Polymers and Synthesis of Block Copolymers 

End-functionalized polymers constitute the starting point for the preparation of a wide 

variety of complex macromolecular architectures, including block, miktoarm, dendritic, and star 

polymers (83). Controlled living polymerizations allow the easy introduction of functional end 

groups into polymers, which have been exploited in subsequent click functionalizations. Not 

surprisingly, in the first example of a clicked block copolymer, advantage was taken of the 

combination of ATRP and CuAAC (84). The group of van Hest showed in 2005 that the bromine 
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group of PS and poly(methyl methacrylate) (PMMA) prepared via ATRP could be easily 

transformed into azides by nucleophilic substitution. CuAAC coupling of the resulting polymers 

with one prepared from an alkynated ATRP initiator (CuBr, DBU, THF) led to the expected 

block copolymers (Fig. 10). This strategy allowed the preparation of a small library of block 

copolymers, some of them from PEG-N3 and PEG-alkyne derivatives. In all cases, the formation 

of the block copolymer was shown to proceed to completion by IR and SEC. More recently, 

CuAAC has also been successfully combined to other polymerization techniques such as 

reversible addition-fragmentation chain transfer (RAFT) (85) and ring-opening polymerizations 

(86). 

 

Fig. 10 

 

The end group functionalization of linear polymers with functional molecules can be used 

as a means to achieve new properties. The first relevant example of this strategy with CuAAC in 

drug delivery was reported by Lutz and coworkers by functionalizing a poly(oligo(ethylene 

glycol) acrylate) (POEGA) obtained by ATRP with a GGRGDG hexapeptide (87). With this 

aim, an azide end group was first installed in POEGA by nucleophilic substitution and then 

reacted with an alkynated derivative of the hexapeptide by means of CuAAC [CuBr, bipyridine, 

NMP] (Fig. 11a). Unfortunately, no biological evaluation of the resulting conjugate was 

accomplished. In another interesting example, the group of Kakuchi exploited the end decoration 

of an azido-functionalized poly(N-isopropylacrylamide) (PNIPAM) with different small 

hydrophilic and hydrophobic alkynated molecules by CuAAC (CuSO4, ascorbate, THF-H2O) 
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with the aim of tuning the characteristic lower critical solution temperature (LCST) of PNIPAM 

(around 32 ºC, depending on concentration and molecular weight) ( 

 

Fig. 11b) (88). 

 

Fig. 11 

 

The combination of orthogonal click technologies for the sequential functionalization of 

the end groups of heterotelechelic polymers appears as an attractive methodology for the 

preparation of complex structures such as triblocks and branched polymers. As a proof of 

concept, the group of Hawker was able to sequentially modify a PS bearing alkene and azide 

groups at the distal ends, by means of CuAAC (CuBr, PMDETA, THF) and TEC [UV light (365 

nm), DMPA; or AIBN, 80 ºC] (89). Functionalization was achieved starting from any of the end 

groups, in agreement with a complete orthogonality of the process (thermal thiol-ene conditions 

had to be employed to avoid azide decomposition under UV irradiation). A similar strategy 

based on Michael addition and TEC has been more recently described (90). 

A further step towards the accelerated multifunctionalization of linear polymers has 

involved the implementation of simultaneous processes. Up to date, two protocols of this type 

have been reported for the preparation of block copolymers. Hizal, Tunca, and coworkers have 

described the combination of CuAAC and Diels-Alder for the preparation of PEG-b-PS-b-

PMMA and PCL-b-PS-b-PMMA triblocks using a bifunctional PS as central block carrying 

anthracene and azide groups at the distal ends (CuBr, PMEDTA, DMF, 120 ºC) (Fig. 12) (91). 
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Application of the same methodology has more recently allowed the same authors to prepare a 

H-shaped quintopolymer from a central poly(tertbutylacrylate) (92). 

 

Fig. 12 

 

Preparation and Functionalization of Cyclic Polymers 

One of the most challenging structures prepared via end group modification of linear 

polymers is undoubtedly that of cyclic polymers. The interest on cyclic polymers comes not only 

from their challenging structures, but also from their properties which are strongly influenced by 

that particular architecture. For instance, Szoka and coworkers showed that cyclic polymers have 

characteristic pharmacokinetic properties (93). Cyclic polyesters were prepared by 

copolymerization of α-cholo-ε-caprolactone (α-Cl-ε-CL) and ε-CL, so that azide could be easily 

introduced at a later stage by nucleophilic displacement of the chlorine atom. CuAAC (CuI, 

Et3N, THF, 40 ºC) was then used for the functionalization of these polymers with alkynated PEG 

chains (to improve water solubility) and a phenol derivative (for radiolabeling with 125I). It was 

revealed that cyclic constructs displayed longer plasma circulation times than the corresponding 

linear analogs, as the latter are able to traverse more easily the nanoporous structure of kidneys. 

Clearly, cyclic polymers represent promising structures for the development of drug 

carriers with improved delivery attributes. In this regard, great efforts have been recently devoted 

for their preparation through click technologies. The group of Matyjaszewski had already 

reported cyclic PS as a side product during the step-growth CuAAC condensation of α-alkyne-ω-

azide-PS (94). It was later demonstrated by the group of Grayson that the concentration of the 
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polymer resulted to be a key factor for the preparation of the cyclic construct (95). By employing 

a continuous addition technique, these authors avoided the utilization of high dilution conditions, 

and cyclic PS up to 4200 Da could be efficiently prepared. In a more recent contribution, 

Monteiro and coworkers investigated the effect of polymer concentration and molecular weight, 

reaction temperature, feed rate, and Cu concentration on this cyclization reaction (96). An 

interesting alternative to the use of high dilution conditions or slow addition processes, in Fig. 13 

is depicted an elegant preparation of cyclic polymers reported by the group of Chen and Liu that 

takes advantage of the unimer-micelle exchange equilibrium of thermo- and pH-responsive 

polymers (97).  

 

Fig. 13 

 

HYDROGELS 

Hydrogels are hydrophilic and three-dimensional polymeric networks capable of absorbing 

large amounts of water that have found extensive application in drug delivery (98). There are 

several examples on the use of click chemistry for the synthesis and functionalization of 

hydrogels. 

Michel Addition in the Preparation of Hydrogels 

Probably, the first report on this field came out from the group of Hubbel who used the 

Michael addition of thiols to methacrylates for the cross-linking of hydrophilic PEG polymers. 

The resulting gels were studied for the delivery of proteins, with BSA taken as a model (99). 

Again by the use of a Michael addition of thiols to vinyl sulfones, the group of Segura has been 
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able to prepare PEG-based hydrogels for the delivery of DNA/PEI polyplexes to mesenchymal 

stem cells (MSC). This gene delivery approach was envisaged to promote the expression of 

tissue inductive factors locally (Fig. 14) (100). Since MSC express high levels of matrix 

metalloproteinase (MMP), MMP-degradable peptides were used as cross-linkers to allow cell 

migration through proteolytic degradation. In addition, RGD peptides were grafted to PEG to 

promote cell adhesion. 

 

Fig. 14 

 

Diels-Alder Cycloaddition in the Preparation of Hydrogels 

An interesting feature of the Diels-Alder reaction comes from its reversibility at high 

temperatures, opening the door to self-healing biomaterials (101). In the early 1990s, the group 

of Saegusa described the use of furan and maleimide end-functionalized poly(N-

acetylethylimine) to prepare hydrogels (CHCl3, room temperature) that could be gradually 

dissolved upon heating (MeOH-H2O, 80 ºC) (102). In a related approach, Wei and coworkers 

have more recently reported the preparation of hydrogels between furan-functionalized 

dimethylacrylamide and bismaleimide-PEG under aqueous conditions (103). These authors 

showed that the resulting hydrogels were stable in water and that the gelation time was strongly 

dependent on temperature, which makes this an attractive approach for the preparation of smart 

injectable materials. 

CuAAC and SPAAC in the Preparation of Hydrogels 
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In recent years, the orthogonality and fast kinetics of CuAAC have attracted the attention 

of the hydrogel community. The first example of the use of CuAAC for the preparation of a 

hydrogel was reported by the group of Hilborn in 2006 (104). Poly(vinyl alcohol) (PVA) was 

modified either with azides or alkynes, producing two different polymers that yielded transparent 

hydrogels upon mixing in the presence of CuSO4/ascorbate (Fig. 15a). Low degree of 

functionalization of the PVA backbone was required in order to maintain the water solubility of 

the building blocks. Altogether, this intermolecular cross-linking constitutes a promising 

alternative to traditional hydrogel preparations involving bifunctional low-molecular weight 

cross-linkers. As an example of this latter approach, Hedrick, Hawker, and coworkers reported 

the preparation of PEG-based hydrogels by CuAAC (Fig. 15b) (105). The high efficiency on the 

cross-linking rendered hydrogels with a more ideal structure (more even distribution of crosslink 

junctions) that resulted in larger cavities and improved properties (greater water adsorption, 

higher flexibility, enhanced tensile stress and tensile strain) compared to those prepared by 

conventional approaches such as photochemical cross-linking. 

 

Fig. 15 

 

One of the main problems associated to the preparation of hydrogels via CuAAC is the 

toxicity of Cu. As a result, thorough hydrogel purifications are required to ensure complete 

removal of the metal catalyst. This critical purification step might seem, however, like a 

contradiction when gelation is performed in the presence of drugs (drug reservoir) or aqueous 

suspensions of cells (tissue engineering scaffolds) because of leaching. Illustrative examples in 
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this field are those reported by the groups of Crescenzi in 2007 (106) and Dentini in 2009 (107) 

on the CuAAC mediated preparation of hydrogels from hyaluronic acid. While control hydrogels 

were extensively dialyzed against EDTA and water in order to remove the Cu catalyst, no 

purifications were performed when in the presence of model drugs (benzidamine and DOX) or 

Saccharomices cerevisiae yeast cells. 

As an alternative to the use of Cu as catalyst, more benign alkyne-azide cycloaddition 

conditions for the preparation of gels have relied on the use of SPAAC. This Cu-free strategy has 

been exploited by the group of Turro for the in situ cross-linking of an azide-functionalized 

photodegradable star polymer with linkers carrying two cyclooctynes (Fig. 15c) (108). This 

strategy based on SPAAC was expected not only to open the door to complex, functional, and 

biocompatible networks, but also to allow better control of gelation than CuAAC. In addition, 

the anaerobic conditions required for similar gelations based on CuAAC (109, 110) were avoided 

in this case. Unfortunately, the selection of poly(tertbutylacrylate) as model scaffold required 

gelation to be performed in organic media, with no proof of drug delivery being accomplished 

(108). A step forward in the SPAAC preparation of biocompatible hydrogels has been more 

recently made by the group of Anseth, which has reported the preparation of PEG-based 

hydrogels under physiological conditions for the in situ encapsulation of 3T3 fibroblasts (111, 

112). In this case, the polymer network was constructed from a star PEG tetraazide that was 

cross-linked with a metalloproteinase cleavable peptide incorporating two terminal 

difluorocyclooctyne groups. In addition, alkene groups were introduced in the peptide backbone 

so that RGD peptides could be photopatterned onto the scaffold using TEC, in order to show 

control over cell growth. This way, two orthogonal and biocompatible click reactions were 
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combined for the preparation of highly sophisticated materials mimicking the properties of the 

extracellular matrix (Fig. 16). 

 

Fig. 16  

 

CONCLUSIONS 

The need of smart materials for the advance of drug delivery has resulted in polymers 

being designed for reducing the toxicity, increasing the absorption, and improving the release 

profile of drugs. At the same time, the inherent multivalency of polymers and dendrimers has 

been exploited for the incorporation of diverse functional molecules of interest in targeting and 

diagnosis. Polymeric hydrogels with the ability to encapsulate drugs and cells have also been 

developed for drug delivery and tissue engineering applications. In this context, the introduction 

of the click concept by Sharpless and coworkers in 2001, focusing the attention on modularity 

and orthogonality, has greatly benefited polymer synthesis, an area where reaction efficiency and 

product purity are significantly challenged. Indeed, click chemistry has revolutionized the 

synthesis of materials and refocused chemist’s interests on the easy production of properties 

rather than on challenging structures. The efficiency related to click reactions has been embraced 

by researchers in different fields and inspired the publication of hundreds of papers in areas from 

materials and polymer science to nanotechnology and drug delivery. 

Although initially, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) attracted most 

of the attention in the field, many other reactions (some of them firmly established before the 

click concept even being proposed) comply with the click philosophy. For example, this is the 
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case of the Michael addition and Diels-Alder which have been traditionally used in drug delivery 

for decades. At the same time, the introduction of the click concept has attracted renewed interest 

on efficient classical transformations and the development of new reactions, such as the thiol-ene 

(TEC) and thiol-yne couplings (TYC). 

Click chemistry has found in drug delivery an attractive test bank for bioconjugation. The 

requirement of multifunctionalized polymeric structures where selectively localizing drugs, 

targeting ligands, and imaging agents in precise proportions and sites has given the opportunity 

to assess the chemical orthogonality between functional groups and to serve as source of 

inspiration for the accelerated preparation/functionalization of complex macromolecular 

architectures. The possibility of clicking unprotected carbohydrates, peptides, and nucleotides of 

interest in drug delivery onto polymers and dendrimers has significantly accelerated the 

production of properties while reducing synthetic efforts. In the same way, click chemistry has 

given unprecedented access to complex copolymers and dendrimers from stoichiometric amounts 

of coupling partners. Cyclic polymers constitute another example of the efficiency of click 

chemistry in drug delivery. They represent promising structures for the creation of drug carriers 

with long plasma circulation times that can be now prepared with unprecedented fidelity thanks 

to click macrocyclization reactions. In addition, the planar and polarized structure of triazol 

linkages has been exploited for the preparation of CuAAC-based peptidomimetics with similar 

properties to peptides and improved in vivo stability. Although click reactions have been 

traditionally employed for the fabrication of biocompatible hydrogels, it has not been until 

recently that various orthogonal click reactions have been combined for the simultaneous 

preparation/functionalization of highly sophisticated hydrogels that mimic the properties of the 
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extracellular matrix. This continuous feedback between drug delivery and click chemistry is 

expected to accelerate current delivery endeavors for the development of theranostics and 

complex multimodal agents. 
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Figure Legends 

Fig. 1 Cu(I)-chelating ligands for CuAAC commonly employed in bioconjugation. [BPDS 

(bathophenanthroline disulphonated disodium salt); TBTA [tris(benzyltriazolylmethyl)amine]; 

THPTA [tris(hydroxypropyltriazolylmethyl)amine]]. 

 

Fig. 2 Representative examples of bifunctional dendrimers. Adapted with permission from a) ref. 

(23); b) ref. (24); and c) ref. (25). 

 

Fig. 3 Repeating units employed in the accelerated preparation of dendrimers: Adapted with 

permission from a) ref. (30, 31); b) ref. (32); c) ref. (33); and d) ref. (34).  

 

Fig. 4 CuAAC decoration of dendrimers with unprotected carbohydrates and increased affinity 

in multivalent carbohydrate recognition as a function of generation and lectin density. Adapted 

with permission from ref. (39) and (41). 

 

Fig. 5 Structure of a PEGylated (purple), self-immolative, dendritic CPT (blue) pro-drug with a 

trigger (red) designed for activation by penicillin-G-amidase. Reproduced with permission from 

ref. (56). 

 

Fig. 6 Functionalization of a PEGylated bow-tie dendrimer with DOX by means of hydrazone 

linkages. [PEO [poly(ethylenoxide)]; TFA (trifluoroacetic acid)]. Adapted with permission from 

ref. (59). 
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Fig. 7 a) Linear carbohydrate-oligoamine polymers prepared by CuAAC as gene delivery 

vehicles. b) Schematic representation of the preparation of a library of cationic polymers 

prepared by ring-opening of diglycidyl ethers by primary amines. Adapted with permission from 

a) ref. (65, 67); and b) ref. (69). 

 

Fig. 8 Representative examples of CuAAC/ATRP protocols. Adapted with permission from a) 

ref. (76); and b) ref. (77). 

 

Fig. 9 Multifunctionalization of linear polymers by simultaneous click reactions. [DMT 

(dimethoxytrityl)]. Adapted with permission from a) ref. (81); and b) ref. (82). 

 

Fig. 10 Preparation of linear block copolymers by means of a combination of ATRP and 

CuAAC. Adapted with permission from ref. (84). 

 

Fig. 11 a) End group functionalization of POEGA with a RGD peptide by means of CuAAC. b) 

Synthesis and effect of end group on the LCST of a library of PNIPAM derivatives. Adapted 

with permission from a) ref. (87); and b) ref. (88). 

 

Fig. 12 Schematic representation of a triblock copolymer synthesis by means of simultaneous 

CuAAC and Diels-Alder reactions. Adapted with permission from ref. (91). 

 



Lallana Page 47 

 

Clicking Polymers for Drug Delivery 

 

Fig. 13 Highly efficient preparation of macrocyclic diblock copolymers via combination of 

supramolecular self-assembly and intramolecular CuAAC ring closure. Reproduced with 

permission from ref. (97). 

 

Fig. 14 Schematic representation of the preparation of PEG-based hydrogels containing matrix 

metalloproteinase sensitive peptides (MMPxl) as linkers and their use for the delivery of 

polyplexes to MSC. Reproduced with permission from ref. (100). 

 

Fig. 15 Representative examples of CuAAC and SPAAC for the preparation of hydrogels. 

Adapted with permission from a) ref. (104); b) ref. (105); and c) ref. (108). 

 

Fig. 16 Macromolecular precursors react through SPAAC allowing for the direct encapsulation 

of cells within click hydrogels. The presence of terminal alkenes in this three-dimensional 

network enables patterning of biological functionalities in real time and with micrometer-scale 

resolution by means of an orthogonal thiol-ene photocoupling reaction (shown for three 

fluorescently labeled peptides using stereolithography). Adapted with permission from ref. (111) 

and (112). 
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