12 research outputs found

    Negative Autopsy in Infant and Juvenile Population: Role of Cardiac Arrhythmias

    Get PDF
    Negative autopsy is a post-mortem examination in which a comprehensive analysis does not provide a cause of death. These include situation of death, anatomical and histological analysis, toxicology and microbiological study. A low part of autopsies remain without a conclusive cause of death, but all these cases are usually seen in young population, apparently healthy who died suddenly and unexpectedly. In these situations a cardiac arrhythmia is suspected as cause of death and genetic testing is recommended despite not regularly performed. Sudden death is a natural and unexpected decease that occurs in apparently healthy people, or whose disease was not severe enough to expect a fatal outcome. It can be due to several pathologies, usually of cardiac cause and called sudden cardiac death. In infants and young people, both long QT syndrome and catecholaminergic polymorphic ventricular tachycardia are main causes in negative autopsies. These genetic diseases lead to ventricular fibrillation, syncope and sudden cardiac death in a normal heart. Unfortunately, sudden cardiac death could be the first manifestation of the diseases, being early identification and prevention a crucial point in current medical practice. This chapter focuses on sudden death and negative autopsy in young population, mainly due to cardiac arrhythmias

    Malignant Arrhythmogenic Role Associated with RBM20: A Comprehensive Interpretation Focused on a Personalized Approach

    Get PDF
    The RBM20 gene encodes the muscle-specific splicing factor RNA-binding motif 20, a regulator of heart-specific alternative splicing. Nearly 40 potentially deleterious variants in RBM20 have been reported in the last ten years, being found to be associated with highly arrhythmogenic events in familial dilated cardiomyopathy. Frequently, malignant arrhythmias can be a primary manifestation of disease. The early recognition of arrhythmic genotypes is crucial in avoiding lethal episodes, as it may have an impact on the adoption of personalized preventive measures. Our study performs a comprehensive update of data concerning rare variants in RBM20 that are associated with malignant arrhythmogenic phenotypes with a focus on personalized medicine.This work was supported by Obra Social "La Caixa Foundation" (LCF/PR/GN16/50290001 and LCF/PR/GN19/50320002), Fondo Investigacion Sanitaria (FIS PI16/01203 and FIS, PI17/01690) from Instituto Salud Carlos III (ISCIII), and "Fundacio Privada Daniel Bravo Andreu". CIBERCV is an initiative of the ISCIII, Spanish Ministry of Economy and Competitiveness

    Rare Variants Associated with Arrhythmogenic Cardiomyopathy: Reclassification Five Years Later.

    Get PDF
    Genetic interpretation of rare variants associated with arrhythmogenic cardiomyopathy (ACM) is essential due to their diagnostic implications. New data may relabel previous variant classifications, but how often reanalysis is necessary remains undefined. Five years ago, 39 rare ACM-related variants were identified in patients with features of cardiomyopathy. These variants were classified following the American College of Medical Genetics and Genomics' guidelines. In the present study, we reevaluated these rare variants including novel available data. All cases carried one rare variant classified as being of ambiguous significance (82.05%) or likely pathogenic (17.95%) in 2016. In our comprehensive reanalysis, the classification of 30.77% of these variants changed, mainly due to updated global frequencies. As in 2016, nowadays most variants were classified as having an uncertain role (64.1%), but the proportion of variants with an uncertain role was significantly decreased (17.95%). The percentage of rare variants classified as potentially deleterious increased from 17.95% to 23.07%. Moreover, 83.33% of reclassified variants gained certainty. We propose that periodic genetic reanalysis of all rare variants associated with arrhythmogenic cardiomyopathy should be undertaken at least once every five years. Defining the roles of rare variants may help clinicians obtain a definite diagnosis

    Discerning the Ambiguous Role of Missense TTN Variants in Inherited Arrhythmogenic Syndromes

    Get PDF
    The titin gene (TTN) is associated with several diseases, including inherited arrhythmias. Most of these diagnoses are attributed to rare TTN variants encoding truncated forms, but missense variants represent a diagnostic challenge for clinical genetics. The proper interpretation of genetic data is critical for translation into the clinical setting. Notably, many TTN variants were classified before 2015, when the American College of Medical Genetics and Genomics (ACMG) published recommendations to accurately classify genetic variants. Our aim was to perform an exhaustive reanalysis of rare missense TTN variants that were classified before 2015, and that have ambiguous roles in inherited arrhythmogenic syndromes. Rare missense TTN variants classified before 2015 were updated following the ACMG recommendations and according to all the currently available data. Our cohort included 193 individuals definitively diagnosed with an inherited arrhythmogenic syndrome before 2015. Our analysis resulted in the reclassification of 36.8% of the missense variants from unknown to benign/likely benign. Of all the remaining variants, currently classified as of unknown significance, 38.3% showed a potential, but not confirmed, deleterious role. Most of these rare missense TTN variants with a suspected deleterious role were identified in patients diagnosed with hypertrophic cardiomyopathy. More than 35% of the rare missense TTN variants previously classified as ambiguous were reclassified as not deleterious, mainly because of improved population frequencies. Despite being inconclusive, almost 40% of the variants showed a potentially deleterious role in inherited arrhythmogenic syndromes. Our results highlight the importance of the periodical reclassification of rare missense TTN variants to improve genetic diagnoses and help increase the accuracy of personalized medicine

    Personalized Interpretation and Clinical Translation of Genetic Variants Associated With Cardiomyopathies

    Get PDF
    Cardiomyopathies are a heterogeneous group of inherited cardiac diseases characterized by progressive myocardium abnormalities associated with mechanical and/or electrical dysfunction. Massive genetic sequencing technologies allow a comprehensive genetic analysis to unravel the cause of disease. However, most identified genetic variants remain of unknown clinical significance due to incomplete penetrance and variable expressivity. Therefore, genetic interpretation of variants and translation into clinical practice remain a current challenge. We performed retrospective comprehensive clinical assessment and genetic analysis in six families, four diagnosed with arrhythmogenic cardiomyopathy, and two diagnosed with hypertrophic cardiomyopathy (HCM). Genetic testing identified three rare variants (two non-sense and one small indel inducing a frameshift), each present in two families. Although each variant is currently classified as pathogenic and the cause of the diagnosed cardiomyopathy, the onset and/or clinical course differed in each patient. New genetic technology allows comprehensive yet cost-effective genetic analysis, although genetic interpretation, and clinical translation of identified variants should be carefully done in each family in a personalized manner

    Reinterpretació de les variants genètiques identificades en una unitat especialitzada en cardiopaties familiars

    Get PDF
    Sudden cardiac death (SCD) is defined as a natural and unexpected death due to cardiac etiology. In addition, when the cause of death remains unexplained after a complete autopsy, a cardiac arrhythmia is suspected as a potential cause of death. In these cases, the terminology used is sudden arrhythmia death syndrome. Coronary heart disease is the leading cause of SCD after the age of 35, accounting for approximately 75% of deaths. Afterwards, cardiomyopathies are the second most frequent cause of SCD, accounting for 10-15% of the total; followed by congenital heart disease, representing 3-5% of the total. Finally, cardiac channelopathies represent between 2 and 5% of all SCD. Cardiac channelopathies are extremely rare diseases that are difficult to diagnose by nonexpert professionals. The first symptom is often sudden death which is always linked to a negative autopsy. Consequently, cardiac channelopathies constitute the paradigm of SCD. Genetic analysis plays a key role in the diagnosis of cardiac channelopathies, in which the identification of a pathogenic genetic variant is often a diagnostic criterion. Therefore, genetic variant classification and routine reinterpretation as data become available represent one of the main challenges associated with genetic analyses, motivating the execution of this doctoral thesis.La mort sobtada cardíaca (MSC) es defineix com una mort natural i inesperada deguda a una alteració cardíaca. A més, en aquells casos en què la mort queda sense una etiologia després de realitzar una autòpsia completa es sospita que la causa més probable de la mort sigui una arrítmia cardíaca sense alteració estructural i el terme utilitzat és el de síndrome arritmogènica associada a la mort sobtada. La malaltia cardíaca coronària és la principal causa de MSC a partir dels 35 anys, representant aproximadament el 75% de les morts. Després d’aquesta, les miocardiopaties són la segona causa més freqüent de MSC, compatibilitzant per un 10- 15% del total; seguides de les cardiopaties congènites, representant un 3-5% del total. Finalment, les canalopaties cardíaques representen entre un 2 i un 5% del total de MSC. Les canalopaties cardíaques constitueixen el paradigma de la MSC ja que són malalties molt rares que sovint no donen cap símptoma abans de la mort sobtada, són difícils de diagnosticar per professionals no experts, i l’autòpsia és, per definició, negativa. L’anàlisi genètica juga un paper fonamental en la diagnosi de les canalopaties cardíaques, en les quals a més, la identificació d’una variant genètica patogènica és sovint un criteri diagnòstic. Així doncs, la classificació de les variants genètiques i la freqüència amb la que aquestes haurien de ser reinterpretades representen un dels principals reptes associats a les anàlisis genètiques, motivant la realització d’aquesta tesi doctoral.Programa de Doctorat en Biologia Molecular, Biomedicina i Salu

    Incomplete Penetrance and Variable Expressivity: Hallmarks in Channelopathies Associated with Sudden Cardiac Death

    No full text
    Sudden cardiac death is defined as an unexpected decease of cardiac origin. In individuals under 35 years old, most of these deaths are due to familial arrhythmogenic syndromes of genetic origin, also known as channelopathies. These familial cardiac syndromes commonly follow an autosomal dominant pattern of inheritance. Diagnosis, however, can be difficult, mainly due to incomplete penetrance and variable expressivity, which are hallmarks in these syndromes. The clinical manifestation of these diseases can range from asymptomatic to syncope but sudden death can sometimes be the first symptom of disease. Early identification of at-risk individuals is crucial to prevent a lethal episode. In this review, we will focus on the genetic basis of channelopathies and the effect of genetic and non-genetic modifiers on their phenotypes

    Unpredicted Aberrant Splicing Products Identified in Postmortem Sudden Cardiac Death Samples

    No full text
    Molecular screening for pathogenic mutations in sudden cardiac death (SCD)-related genes is common practice for SCD cases. However, test results may lead to uncertainty because of the identification of variants of unknown significance (VUS) occurring in up to 70% of total identified variants due to a lack of experimental studies. Genetic variants affecting potential splice site variants are among the most difficult to interpret. The aim of this study was to examine rare intronic variants identified in the exonic flanking sequence to meet two main objectives: first, to validate that canonical intronic variants produce aberrant splicing; second, to determine whether rare intronic variants predicted as VUS may affect the splicing product. To achieve these objectives, 28 heart samples of cases of SCD carrying rare intronic variants were studied. Samples were analyzed using 85 SCD genes in custom panel sequencing. Our results showed that rare intronic variants affecting the most canonical splice sites displayed in 100% of cases that they would affect the splicing product, possibly causing aberrant isoforms. However, 25% of these cases (1/4) showed normal splicing, contradicting the in silico results. On the contrary, in silico results predicted an effect in 0% of cases, and experimental results showed >20% (3/14) unpredicted aberrant splicing. Thus, deep intron variants are likely predicted to not have an effect, which, based on our results, might be an underestimation of their effect and, therefore, of their pathogenicity classification and family members’ follow-up

    Short QT Syndrome: A Comprehensive Genetic Interpretation and Clinical Translation of Rare Variants

    No full text
    Short QT syndrome, one of the most lethal entities associated with sudden cardiac death, is a rare genetic disease characterized by short QT intervals detected by electrocardiogram. Several genetic variants are causally linked to the disease, but there has yet to be a comprehensive analysis of variants among patients with short QT syndrome. To fill this gap, we performed an exhaustive study of variants currently catalogued as deleterious in short QT syndrome according to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Analysis of the 32 variants described in the literature determined that only nine (28.12%) have a conclusive pathogenic role. All definitively pathogenic variants are located in KCNQ1, KCNH2, or KCNJ2; three genes encoding potassium channels. Other variants located in genes encoding calcium or sodium channels are associated with electrical alterations concomitant with shortened QT intervals but do not guarantee a diagnosis of short QT syndrome. We recommend caution regarding previously reported variants classified as pathogenic. An exhaustive re-analysis is necessary to clarify the role of each variant before routinely translating genetic findings to the clinical setting

    Role of copy number variants in sudden cardiac death and related diseases: genetic analysis and translation into clinical practice.

    No full text
    Several studies have identified copy number variants (CNVs) as responsible for cardiac diseases associated with sudden cardiac death (SCD), but very few exhaustive analyses in large cohorts of patients have been performed, and they have been generally focused on a specific SCD-related disease. The aim of the present study was to screen for CNVs the most prevalent genes associated with SCD in a large cohort of patients who suffered sudden unexplained death or had an inherited cardiac disease (cardiomyopathy or channelopathy). A total of 1765 European patients were analyzed with a homemade algorithm for the assessment of CNVs using high-throughput sequencing data. Thirty-six CNVs were identified (2%), and most of them appeared to have a pathogenic role. The frequency of CNVs among cases of sudden unexplained death, patients with a cardiomyopathy or a channelopathy was 1.4% (8/587), 2.3% (20/874), and 2.6% (8/304), respectively. Detection rates were particularly high for arrhythmogenic cardiomyopathy (5.1%), long QT syndrome (4.7%), and dilated cardiomyopathy (4.4%). As such large genomic rearrangements underlie a non-neglectable portion of cases, we consider that their analysis should be performed as part of the routine genetic testing of sudden unexpected death cases and patients with SCD-related diseases
    corecore