71 research outputs found

    Novel foods in the European Union: Scientific requirements and challenges of the risk assessment process by the European Food Safety Authority

    Get PDF
    The European Food Safety Authority (EFSA) has been involved in the risk assessment of novel foods since 2003. The implementation of the current novel food regulation in 2018 rendered EFSA the sole entity of the European Union responsible for such safety evaluations. The risk assessment is based on the data submitted by applicants in line with the scientific requirements described in the respective EFSA guidance document. The present work aims to elaborate on the rationale behind the scientific questions raised during the risk assessment of novel foods, with a focus on complex mixtures and whole foods. Novel foods received by EFSA in 2003-2019 were screened and clustered by nature and complexity. The requests for additional or supplementary information raised by EFSA during all risk assessments were analyzed for identifying reoccurring issues. In brief, it is shown that applications concern mainly novel foods derived from plants, microorganisms, fungi, algae, and animals. A plethora of requests relates to the production process, the compositional characterization of the novel food, and the evaluation of the product's toxicological profile. Recurring issues related to specific novel food categories were noted. The heterogeneous nature and the variable complexity of novel foods emphasize the challenge to tailor aspects of the evaluation approach to the characteristics of each individual product. Importantly, the scientific requirements for novel food applications set by EFSA are interrelated, and only a rigorous and cross-cutting approach adopted by the applicants when preparing the respective application dossiers can lead to scientifically sound dossiers. This is the first time that an in-depth analysis of the experience gained by EFSA in the risk assessment of novel foods and of the reasoning behind the most frequent scientific requests by EFSA to applicants is made

    Animal dietary exposure in the risk assessment of feed derived from genetically modified plants

    Get PDF
    EFSA carries out the risk assessment of genetically modified plants for food and feed uses under Regulation (EU) No 503/2013. Exposure assessment – anticipated intake/extend of use shall be an essential element of the risk assessment of genetically modified feeds, as required by Regulation (EU) No 503/2013. Estimates of animal dietary exposure to newly expressed proteins should be determined to cover average consumption across all the different species, age, physiological and productive phases of farmed and companion animals, and identify and consider particular consumer groups with expected higher exposure. This statement is aimed at facilitating the reporting of the information that applicants need to provide on expected animal dietary exposure to newly expressed proteins and to increase harmonisation of the application dossiers to be assessed by the EFSA GMO Panel. Advice is provided on the selection of proper feed consumption and feed concentration data, and on the reporting of exposure’s estimates. An overview of the different uncertainties that may be linked to the estimations is provided. This statement also explains how to access an Excel calculator which should be used in future applications as basis to provide a more consistent presentation of estimates of expected animal dietary exposure

    Statement on in vitro protein digestibility tests in allergenicity and protein safety assessment of genetically modified plants

    Full text link
    This statement supplements and updates the GMO Panel guidance document on allergenicity of genetically modified (GM) plants published in 2017. In that guidance document, the GMO Panel considered that additional investigations on in vitro protein digestibility were needed before providing any additional recommendations in the form of guidance to applicants. Thus, an interim phase was proposed to assess the utility of an enhanced in vitro digestion test, as compared to the classical pepsin resistance test. Historically, resistance to degradation by pepsin using the classical pepsin resistance test has been considered as additional information, in a weight-of-evidence approach, for the assessment of allergenicity and toxicity of newly expressed proteins in GM plants. However, more recent evidence does not support this test as a good predictor of allergenic potential for hazard. Furthermore, there is a need for more reliable systems to predict the fate of the proteins in the gastrointestinal tract and how they interact with the relevant human cells. Nevertheless, the classical pepsin resistance test can still provide some information on the physicochemical properties of novel proteins relating to their stability under acidic conditions. But other methods can be used to obtain data on protein's structural and/or functional integrity. It is acknowledged that the classical pepsin resistance test is embedded into international guidelines, e.g. Codex Alimentarius and Regulation (EU) No 503/2013. For future development, a deeper understanding of protein digestion in the gastrointestinal tract could enable the framing of more robust strategies for the safety assessment of proteins. Given the high complexity of the digestion and absorption process of dietary proteins, it is needed to clarify and identify the aspects that could be relevant to assess potential risks of allergenicity and toxicity of proteins. To this end, a series of research questions to be addressed are also formulated in this statement

    Assessment of genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 × DAS‐40278‐9 and subcombinations independently of their origin for food and feed uses, import and processing under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2013‐113)

    Get PDF
    Maize MON 89034 × 1507 × MON 88017 × 59122 × DAS‐40278‐9 (five‐event stack maize) was produced by conventional crossing to combine five single events: MON 89034, 1507, MON 88017, 59122 and DAS‐40278‐9. The GMO Panel previously assessed the 5 single maize events and 11 of their subcombinations and did not identify safety concerns. No new data on the single maize events or their 11 subcombinations that could modify the original conclusions on their safety were identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicates that the combination of the single maize events and of the newly expressed proteins in the five‐event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that the five‐event stack maize, as described in this application, is as safe as and nutritionally equivalent to its non‐GM comparator and the non‐GM reference varieties tested. In the case of accidental release of the five‐event stack maize into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in the 14 maize subcombinations for which no experimental data were provided, and concludes that they are expected to be as safe as and nutritionally equivalent to the single events, the previously assessed subcombinations and the five‐event stack maize. The post‐market environmental monitoring plan and reporting intervals are in line with the intended uses of the five‐event stack maize. No post‐market monitoring of food/feed is considered necessary. The GMO Panel concludes that the five‐event stack maize and its subcombinations are as safe as its non‐GM comparator and the tested non‐GM reference varieties with respect to potential effects on human and animal health and the environment

    Assessment of genetically modified soybean MON 87751 for food and feed uses under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2014‐121)

    Get PDF
    Soybean MON87751 was developed through Agrobacterium tumefaciens-mediated transformation to provide protection certain specific lepidopteran pests by the expression of the Cry1A.105 and Cry2Ab2 proteins derived from Bacillus thuringiensis. The molecular characterisation data and bioinformatic analyses did not identify issues requiring assessment for food and feed safety. None of the compositional, agronomic and phenotypic differences identified between soybean MON87751 and the conventional counterpart required further assessment. The GMO Paneldid not identify safety concerns regarding the toxicity and allergenicity of the Cry1A.105 and Cry2Ab2 proteins as expressed in soybean MON87751, and found no evidence that the genetic modification might significantly change the overall allergenicity of soybean MON87751. The nutritional impact of soybean MON87751-derived food and feed is expected to be the same as those derived from the conventional counterpart and non-GM commercial reference varieties. The GMO Panelconcludes that soybean MON87751, as described in this application, is nutritionally equivalent to and as safe as the conventional counterpart and the non-GM soybean reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable soybean MON87751 seeds into the environment, soybean MON87751 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean MON87751. In conclusion, soybean MON87751, as described in this application, is as safe as its conventional counterpart and the tested non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment

    Statement complementing the EFSA Scientific Opinion on application (EFSA-GMO-UK-2006-34) for authorisation of food and feed containing, consisting of and produced from genetically modified maize 3272

    Get PDF
    Following a request from the European Commission, the GMO Panel assessed additional information related to the application for authorisation of food and feed containing, consisting of and produced from genetically modified (GM) maize 3272 (EFSA-GMO-UK-2006-34). The applicant conducted new agronomic, phenotypic and compositional analysis studies on maize 3272 and assessed the allergenic potential of AMY797E protein, addressing elements that remained inconclusive from previous EFSA opinion issued in 2013. The GMO Panel is of the opinion that the agronomic and phenotypic characteristics as well as forage and grain composition of maize 3272 do not give rise to food and feed safety, and nutritional concerns when compared to non-GM maize. Considering the scope of this application and the characteristics of the trait introduced in this GM maize, the effect of processing and potential safety implications of specific food or feed products remain to be further investigated. Regarding the allergenic potential of AMY797E protein and considering all possible food and feed uses of maize 3272, the Panel concludes that the information provided does not fully address the concerns previously raised by the Panel in 2013. Owing to the nature and the knowledge available on this protein family, it is still unclear whether under specific circumstances the alpha-amylase AMY797E has the capacity to sensitise certain individuals and to cause adverse effects. To further support the safety of specific products of maize 3272, the applicant provided thorough information relevant for the allergenicity assessment of dried distiller grains with solubles (DDGS), which is the main product of interest for importation into the EU. Having considered the information provided on this product, the Panel is of the opinion that under the specific conditions of use described by the applicant, DDGS produced from maize 3272 does not raise concerns when compared to DDGS from non-GM maize

    Guidance on allergenicity assessment of genetically modified plants

    Get PDF
    This document provides supplementary guidance on specific topics for the allergenicity risk assessment of genetically modified plants. In particular, it supplements general recommendations outlined in previous EFSA GMO Panel guidelines and Implementing Regulation (EU) No 503/2013. The topics addressed are non-IgE-mediated adverse immune reactions to foods, in vitro protein digestibility tests and endogenous allergenicity. New scientific and regulatory developments regarding these three topics are described in this document. Considerations on the practical implementation of those developments in the risk assessment of genetically modified plants are discussed and recommended, where appropriate. (C) 2017 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority

    Assessment of genetically modified maize DP4114 × MON 89034 × MON 87411 × DAS‐40278‐9 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA GMO‐NL‐2020‐171)

    Get PDF
    Genetically modified maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9 was developed by crossing to combine four single events: DP4114, MON 89034, MON 87411 and DAS-40278-9. The GMO Panel previously assessed the four single maize events and two of the subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the four-event stack maize does not give rise to food and feed safety and nutritional concerns. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable four-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in eight of the maize subcombinations not previously assessed and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the four-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP4114 × MON 89034 × MON 87411 × DAS-40278-9. Post-market monitoring of food/feed is not considered necessary. The GMO Panel concludes that the four-event stack maize and its subcombinations are as safe as its non-GM comparator and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment

    Assessment of genetically modified maize MON 87419 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐NL‐2017‐140)

    Get PDF
    Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The postmarket environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment
    • 

    corecore