2,840 research outputs found

    Epidemiology of Infant Dengue Cases Illuminates Serotype-Specificity in the Interaction between Immunity and Disease, and Changes in Transmission Dynamics

    Get PDF
    BACKGROUND: Infants born to dengue immune mothers acquire maternal antibodies to dengue. These antibodies, though initially protective, decline during the first year of life to levels thought to be disease enhancing, before reaching undetectable levels. Infants have long been studied to understand the interaction between infection and disease on an individual level. METHODS/FINDINGS: Considering infants (cases \u3c 1 year old) as a unique group, we analyzed serotype specific dengue case data from patients admitted to a pediatric hospital in Bangkok, Thailand. We show differences in the propensity of serotypes to cause disease in individuals with dengue antibodies (infants and post-primary cases) and in individuals without dengue antibodies (primary cases). The mean age of infant cases differed among serotypes, consistent with previously observed differential waning of maternal antibody titers by serotype. We show that trends over time in epidemiology of infant cases are consistent with those observed in the whole population, and therefore with trends in the force of infection. CONCLUSIONS/SIGNIFICANCE: Infants with dengue are informative about the interaction between antibody and the dengue serotypes, confirming that in this population DENV-2 and DENV-4 almost exclusively cause disease in the presence of dengue antibody despite infections occurring in others. We also observe differences between the serotypes in the mean age in infant cases, informative about the interaction between waning immunity and disease for the different serotypes in infants. In addition, we show that the mean age of infant cases over time is informative about transmission in the whole population. Therefore, ongoing surveillance for dengue in infants could provide useful insights into dengue epidemiology, particularly after the introduction of a dengue vaccine targeting adults and older children

    Geometric frustration in small colloidal clusters

    Full text link
    We study the structure of clusters in a model colloidal system with competing interactions using Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak, long-ranged repulsion is used to model electrostatic charging in experimental systems. The former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive Yukawa interaction. We consider the yield of clusters of specific structure as a function of the strength of the interactions, for clusters with m=3,4,5,6,7,10 and 13 colloids. At sufficient strengths of the attractive interaction (around 10 kT), the average bond lifetime approaches the simulation timescale and the system becomes nonergodic. For small clusters m<=5 where geometric frustration is not relevant, despite nonergodicity, for sufficient strengths of the attractive interaction the yield of clusters which maximise the number of bonds approaches 100%. However for m=7m=7 and higher, in the nonergodic regime we find a lower yield of these structures where we argue geometric frustration plays a significant role. m=6m=6 is a special case, where two structures, of octahedral and C2v symmetry compete, with the latter being favoured by entropic contributions in the ergodic regime and by kinetic trapping in the nonergodic regime. We believe that our results should be valid as far as the one-component description of the interaction potential is valid. A system with competing electrostatic repulsions and van der Waals attractions may be such an example. However, in some cases, the one-component description of the interaction potential may not be appropriate.Comment: 21 pages, accepted for publication by J. Phys. Condens. Matte

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Full text link
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870
    • …
    corecore