29 research outputs found

    Virtual Asset Representation for enabling Adaptive Assembly at the Example of Electric Vehicle Production

    Get PDF
    Manufacturing companies are confronted with the challenge of adapting to ever-changing requirements of markets in order to remain competitive. Besides the rising number of product variants, increasingly frequent product changes require a continuous adaptation of assembly processes including its work instructions. Adaptive and highly connected agile assembly systems are designed to meet these challenges by enabling the interaction of various assets in assembly. A successful implementation of such Industry 4.0 (I4.0) solutions requires the development of a semantic oriented adaptive framework, which connects the physical with the virtual world. It enables interactive and situation-aware solutions such as Augmented Reality applications to adapt to worker capabilities and to improve worker satisfaction by providing information, based on individual experience, skills and personal preferences. A central part of the adaptive framework is the semantic representation of tangible and intangible assets through a Virtual Asset Representation containing all relevant asset information for adaptive assembly. This paper shows a three levels structure for adaptive assembly implementation, consisting of the adaptive framework level, the Virtual Asset Representation (VAR) ontology level and the use case level. The implementation of an adaptive assembly system is shown in the use case of a rear light assembly process of an electric vehicle in the context of the EU funded project A4BLUE. Based on the gained experiences a critical reflection on target fulfilment and user-friendliness of the VAR is given

    Maternal and Neonatal Prognostic Factors for Cardiorespiratory Events in Healthy Term Neonates During Early Skin-to-Skin Contact

    Get PDF
    Cardiorespiratory events; Prognostic factor; Pulse oximetryEventos cardiorrespiratorios; Factor pronóstico; Oximetría de pulsoEsdeveniments cardiorespiratoris; Factor pronòstic; Oximetria de polsBackground: During early skin-to-skin contact (ESSC), alterations in peripheral oxygen saturation (SpO2) and heart rate (HR) have been frequently observed. Objectives: This study aimed to determine the incidence of cardiorespiratory events (CREs) during ESSC in healthy term newborns (HTNs) and estimate the association of maternal and neonatal prognostic factors with the risk of CREs. Methods: A pooled analysis of the cohort from a clinical trial involving healthy mother–child dyads during ESSC was performed. Pulse oximetry was employed to continuously monitor SpO2 and HR within 2 h after birth. The individual and combined prognostic relevance of the demographic and clinical characteristics of dyads for the occurrence of a CRE (SpO2 180 bpm) was analyzed through logistic regression models. Results: Of the 254 children assessed, 169 [66.5%; 95% confidence interval (95% CI), 60.5–72.5%] had at least one CRE. The characteristics that increased the risk of CRE were maternal age ≥35 years (odds ratio, 2.21; 95% CI, 1.19–4.09), primiparity (1.96; 1.03–3.72), gestational body mass index (BMI) >25 kg/m2 (1.92; 1.05–3.53), and birth time between 09:00 p.m. and 08:59 a.m. (2.47; 1.02–5.97). Conclusion: CREs were more frequent in HTNs born during nighttime and in HTNs born to first-time mothers, mothers ≥35 years, and mothers with a gestational BMI >25 kg/m2. These predictor variables can be determined during childbirth. Identification of neonates at higher risk of developing CREs would allow for closer surveillance during ESSC

    An artificial intelligence-based collaboration approach in industrial IoT manufacturing : key concepts, architectural extensions and potential applications

    Get PDF
    The digitization of manufacturing industry has led to leaner and more efficient production, under the Industry 4.0 concept. Nowadays, datasets collected from shop floor assets and information technology (IT) systems are used in data-driven analytics efforts to support more informed business intelligence decisions. However, these results are currently only used in isolated and dispersed parts of the production process. At the same time, full integration of artificial intelligence (AI) in all parts of manufacturing systems is currently lacking. In this context, the goal of this manuscript is to present a more holistic integration of AI by promoting collaboration. To this end, collaboration is understood as a multi-dimensional conceptual term that covers all important enablers for AI adoption in manufacturing contexts and is promoted in terms of business intelligence optimization, human-in-the-loop and secure federation across manufacturing sites. To address these challenges, the proposed architectural approach builds on three technical pillars: (1) components that extend the functionality of the existing layers in the Reference Architectural Model for Industry 4.0; (2) definition of new layers for collaboration by means of human-in-the-loop and federation; (3) security concerns with AI-powered mechanisms. In addition, system implementation aspects are discussed and potential applications in industrial environments, as well as business impacts, are presented

    Succinate Pathway in Head and Neck Squamous Cell Carcinoma: Potential as a Diagnostic and Prognostic Marker

    Get PDF
    Simple Summary: Emerging evidence points to succinate as an important oncometabolite in cancer development; however, the contribution of the succinate-SUCNR1 axis to cancer progression remains unclear. Head and neck squamous cell carcinoma (HNSCC) is associated with disease and treatmentrelated morbidity so there is an urgent need for innovation in treatment and diagnosis practices. Our aim was to evaluate the potential of the succinate-related pathway as a diagnostic and prognostic biomarker in HNSCC. The circulating succinate levels are increased in HNSCC, being a potential noninvasive biomarker for HNSCC diagnosis. Moreover, the succinate receptor (SUCNR1) and genes related to succinate metabolism, which are predominantly expressed in the tumoral mucosa as compared with healthy tissue, are positively associated with plasma succinate. Remarkably, we found that SUCNR1 and SDHA expression levels predict prognosis

    A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma

    Get PDF
    The chromosomal translocation t(11;14)(q13;q32) leading to cyclin-D1 overexpression plays an essential role in the development of mantle cell lymphoma (MCL), an aggressive tumor that remains incurable with current treatment strategies. Cyclin-D1 has been postulated as an effective therapeutic target, but the evaluation of this target has been hampered by our incomplete understanding of its oncogenic functions and by the lack of valid MCL murine models. To address these issues, we generated a cyclin-D1-driven mouse model in which cyclin-D1 expression can be regulated externally. These mice developed cyclin-D1-expressing lymphomas capable of recapitulating features of human MCL. We found that cyclin-D1 inactivation was not sufficient to induce lymphoma regression in vivo; however, using a combination of in vitro and in vivo assays, we identified a novel prosurvival cyclin-D1 function in MCL cells. Specifically, we found that cyclin-D1, besides increasing cell proliferation through deregulation of the cell cycle at the G(1)-S transition, sequestrates the proapoptotic protein BAX in the cytoplasm, thereby favoring BCL2's antiapoptotic function. Accordingly, cyclin-D1 inhibition sensitized the lymphoma cells to apoptosis through BAX release. Thus, genetic or pharmacologic targeting of cyclin-D1 combined with a proapoptotic BH3 mimetic synergistically killed the cyclin-D1-expressing murine lymphomas, human MCL cell lines, and primary lymphoma cells. Our study identifies a role of cyclin-D1 in deregulating apoptosis in MCL cells, and highlights the potential benefit of simultaneously targeting cyclin-D1 and survival pathways in patients with MCL. This effective combination therapy also might be exploited in other cyclin-D1-expressing tumors

    Integrating privacy debt and VSE's software developments

    No full text
    With the advent of regulations protecting users such as the General Data Protection Regulation, security and privacy concerns are playing a new role in small settings such as in very small entities. Their relevance is increasing, and privacy is being considered a Troy horse in software developments. In fact, privacy is a part of software architectural decisions, and they must be considered as a technical debt. The contributions of this paper are the following: a privacy debt definition with a principal and an interest, privacy-related activities to be considered within the ISO/IEC 29110 basic profile, and the use of the net present value within this context. All these contributions help us to integrate privacy debt and VSE's software developments

    SENSORY INPUT-DEPENDENT CHANGES IN GLUTAMATERGIC NEUROTRANSMISSION- RELATED GENES AND PROTEINS IN THE ADULT RAT TRIGEMINAL GANGLION

    No full text
    Experience-dependent plasticity induces lasting changes in the structure of synapses, dendrites and axons at both molecular and anatomical levels. Whilst relatively well studied in the cortex, little is known about the molecular changes underlying experience-dependent plasticity at peripheral levels of the sensory pathways. Given the importance of glutamatergic neurotransmission in the somatosensory system and its involvement in plasticity, in the present study, we investigated gene and protein expression of glutamate receptor subunits and associated molecules in the trigeminal ganglion (TG) of young adult rats. Microarray analysis of naïve rat TG revealed significant differences in the expression of genes, coding for various glutamate receptor subunits and proteins involved in clustering and stabilization of AMPA receptors, between left and right ganglion. Long-term exposure to sensory-enriched environment increased this left-right asymmetry in gene expression. Conversely, unilateral whisker trimming on the right side almost eliminated the mentioned asymmetries. The above manipulations also induced side-specific changes in the protein levels of glutamate receptor subunits. Our results show that sustained changes in sensory input induce modifications in glutamatergic transmission-related gene expression in the TG, thus supporting a role for this early sensory-processing node in experience-dependent plasticity
    corecore