224 research outputs found

    On the meaning of ConWIP cards:an assessment by simulation

    Get PDF
    The simplicity of Constant Work-In-Process (ConWIP) makes it one of the most widely adopted card-based production control solutions. Its simplicity, however, also limits the opportunities that are available to improve the concept. There are arguably only two major search directions: (i) to alter the meaning of cards away from controlling jobs; and (ii) to adopt alternative, more sophisticated backlog sequencing rules. In this study, we outline a simple, practical load-based ConWIP system that changes the meaning of cards. Rather than controlling the number of jobs, cards are associated with a certain amount of workload. Simulation results demonstrate the positive performance impact of limiting the total shop load. The Workload Control literature advocates the use of a corrected load measure as it better represents the direct load queuing at a station; but this worsens performance when compared to a shop load measure in the context of ConWIP

    Direct Workload Control:Simplifying Continuous Order Release

    Get PDF
    Workload Control withholds orders from the shop floor in a backlog from which they are released to meet certain performance metrics. This release decision precedes the execution of orders at shop floor stations. For each station there are consequently three types of workload: indirect, released work that is still upstream of the station; direct, work that is currently at the station; and, completed, work that is still on the shop floor but is downstream of the station. Most release methods control an aggregate workload made up of some representation of at least two of these three workload types. Yet the core objective of Workload Control release methods relates to only one of the three types – that is, to create a small, stable direct load in front of each station. Clearly, order release would be greatly simplified if only the direct load had to be considered. Using discrete event simulation, we show that Direct Workload Control leads to performance levels that match those of more complex and sophisticated approaches to Workload Control. Further, it greatly simplifies continuous order release, decentralising the release decision by allowing it to be executed at each gateway station. This has important implications for research and practice

    Production Planning and Control in Multi-Stage Assembly Systems:An Assessment of Kanban, MRP, OPT (DBR) and DDMRP by Simulation

    Get PDF
    Multi-stage assembly systems where the demand for components depends on the market-driven demand for end products, are commonly encountered in practice. Production Planning and Control (PPC) systems for this production context include Kanban, Materials Requirement Planning (MRP), Optimised Production Technology (OPT), and Demand Driven MRP (DDMRP). All four of these PPC systems are widely applied in practice and literature abounds on each of these systems. Yet, studies comparing these systems are scarce and remain largely inconclusive. In response, this study uses simulation to assess the performance of all four PPC systems under different levels of bottleneck severity and due date tightness. Results show that MRP performs the worst, which can be explained by the enforcement of production start dates. Meanwhile, Kanban and DDMRP perform the best if there is no bottleneck. If there is a bottleneck then DDMRP and OPT perform the best, with DDMRP realising lower inventory levels. If there is a severe bottleneck, then the performance results for DDMRP and OPT converge. This identification of contingency factors not only resolves some of the inconsistencies in the literature but also has important implications for the applicability of these four PPC systems in practice

    Parts feeding in two-stage assembly system:an assessment by simulation

    Get PDF
    Literature on two-stage assembly systems typically assume that parts (subassemblies) require several sequential operations at the first production stage. However, parts can often be produced at a single station. This shifts the focus away from coordination to the provision of parts. The literature on parts feeding typically assumes the full availability of parts at stock points (e.g. warehouses or supermarkets), thereby neglecting the potential impact of capacity constraints at upstream stations. In response, this study assesses the performance of different parts feeding policies (kitting and line stocking). Simulation results show limited operational performance differences between kitting and line stocking in to-stock systems, with the main difference being where stock points are located. However, results also highlight the potential for producing subassemblies to-order if the constraint is how much (and not where) stock can be kept. This links together the literature on parts feeding with that on customer order decoupling points

    On the backlog-sequencing decision for extending the applicability of ConWIP to high-variety contexts:an assessment by simulation

    Get PDF
    Constant Work-in-Process (ConWIP) is a card-based control system that was developed for simple flow shops – a lack of load-balancing capabilities hinders its application to more complex shops. In contrast, load balancing is an integral part of Workload Control, a production planning and control concept developed for high-variety environments. One means of load balancing evident in the Workload Control literature is through the use of a capacity slack-based backlog-sequencing rule. This study therefore investigates the potential of the backlog-sequencing decision to improve load balancing in the context of ConWIP, thereby making it suitable for more complex, high-variety environments. Using simulation, we demonstrate that: (i) the choice of backlog-sequencing rule significantly impacts throughput times and tardiness-related performance measures; and (ii) capacity slack-based sequencing rules achieve significant performance improvements over ‘classical’ ConWIP backlog-sequencing rules. These results significantly extend the applicability of ConWIP. Results from the Workload Control literature however do not directly translate across to ConWIP. The simplified release procedure of ConWIP makes backlog-sequencing based on planned release dates dysfunctional. This negatively impacts the performance of modified capacity slack-based sequencing rules that were recently shown to be the best choice for Workload Control

    Improving performance in POLCA controlled high variety shops:an assessment by simulation

    Get PDF
    POLCA (i.e. Paired-cell Overlapping Loops of Cards with Authorization) is a card-based production control approach developed to support the adoption of Quick Response Manufacturing. The approach has received significant research attention but has remained largely unchanged since its introduction in the late 1990s. The main improvements have occurred in the context of an electronic POLCA system, but such developments undermine the simplicity of the original card-based concept. We ask: is there any refinement possible to enhance the performance of POLCA without jeopardizing its simplicity? By analyzing POLCA, two possible refinements are identified: (i) the choice of rule to support both the card allocation and dispatching decisions; and (ii) the use of a starvation avoidance mechanism to overcome premature station idleness, as reported in the context of load limiting order release. Using simulation, we demonstrate that performance gains can be obtained by using different rules for card allocation and dispatching other than the earliest release date rule typically applied in POLCA for both decisions. Further, results demonstrate performance improvements for all combinations of card allocation and dispatching rules considered via the addition of a simple starvation avoidance mechanism. Both refinements significantly enhance POLCA performance, potentially furthering its application in practice

    Lot Synchronization in Make-to-Order Shops with Order Release Control:An Assessment by Simulation

    Get PDF
    Lot splitting is an important strategy for avoiding the starvation of workstations, for accelerating the progress of jobs, and ultimately for improving overall due date performance. While lot splitting has received much attention in the extant literature, the use of alternative lot transfer policies that determine how the flow of lots through the production system is synchronised has been largely neglected. This study uses simulation to assess the performance of different lot synchronisation policies at release and different lot transfer policies on the shop floor in a ConWIP (Constant Work-In-Process) controlled job shop. The results suggest that different approaches should be applied at the release and shop floor levels. While lots should be synchronised in some form at order release, their progress on the shop floor should not be synchronised. Instead, lot coordination should be executed by dispatching in accordance with repetitive lots logic. The results further highlight that if lot progress is synchronised in systems that limit the workload, then lot release should also be synchronised. Otherwise, blocking may occur if lot progress on the shop floor depends on the release of lots, which in turn depends on lot progress. These findings have important implications for research and practice
    • …
    corecore