212 research outputs found

    A study of capillary pressure and capillary continuity in fractured rocks

    Get PDF
    The production of oil is challenging in fractured reservoirs due to the large transmissibility contrast between matrix and fracture, and primary recovery is often low. The recovery efficiency depends on the relationship between the fracture and matrix permeabilities, and is strongly dependent on the wettability of the matrix, which reflects the imbibition potential of the reservoir. High demands and rising oil prices has increased focus on improved oil recovery from large, low recovery oil fields. Some of the world’s largest remaining oil reserves are found in oil‐wet, fractured, carbonate reservoirs. The understanding of multiphase fluid flow in oilwet fractured reservoirs has been studied in this thesis, especially the influence of capillary pressure. The presence of capillary pressure is important in recovery mechanisms like spontaneous imbibition, waterflooding and gravity drainage. The centrifuge method is a frequently used method to measure capillary pressure, and relies on establishing a stable saturation for each rotational speed. There exists no global, absolute requirement for equilibrium, and this size is often based on experience, and is strongly dependent on the sensitivity of the measuring apparatus. The benefits of using an automated, high resolution camera in volume measurements have been demonstrated, and the impact of accuracy on the time to reach equilibrium saturation at a given rotational speed is illustrated. Another difficulty when generating the capillary pressure curve using a centrifuge is the large uncertainty related to solving the integral problem associated with the calculation of the capillary pressure curve from production data. Methodologies for direct measurement of saturation to avoid this uncertainty have been proposed, eliminating the need for mathematical approximate solutions to obtain the local capillary pressure curve. The Nuclear Tracer Imaging Centrifuge (NTIC) method has the capability to measure the local water saturation during centrifugation, thus limiting the redistribution of fluids and the need to solidify phases, drawbacks associated with other methods for direct measurement of capillary pressure. Improved capillary pressure curves are presented, and the reliability and reproducibility in the NTIC capillary pressure curves have been demonstrated. The curves generally coincided with results from other existing centrifuge methods. The correct measurement of saturation as a function of capillary pressure will increase the confidence in simulations where the input multiphase controls the flow patterns and the recovery. The impact of wettability on capillary continuity in fractured rocks has been studied extensively, but is still not fully understood. Two visualization methods, to measure the in situ fluid saturation development in fractured rocks, are reviewed and illustrate the benefits of applying complimentary imaging to study the impact of fractures and wettability on multiphase flow in fractured reservoirs. Separately, each technique provided useful insights to local phenomena, but collectively, when combining the resolutions and observations made, a better explanation of observed phenomena could be obtained. The concept of wetting phase bridges observed during waterfloods in stacked waterwet homogenous chalk plugs has been extended to a heterogeneous limestone rock type with an oil‐wet wetting preference. The study shows how droplets of oil forming on the fracture surface contribute to the fluid transfer between two separated matrix blocks across an open fracture. The presence of droplets, evolving into bridges across the fracture, may be important for gravity drainage, reducing the capillary retained oil in each isolated matrix block. Droplets growth is impacted by the wettability of the interface between fracture and matrix and flow rates. Spontaneous transport of oil, i.e. transport without associated pressure increase, across the fracture was observed when there was an affinity between mobile fluid and the wettability of the fracture surface. Injection rates and pressure across the fracture controlled droplet growth and the potential for the droplets to bridge the fracture to form a continuum in the capillary pressure curve. The importance of fracture capillary pressure in waterfloods of fractured limestone rocks was demonstrated in a numerical reproduction of experimental results. The results showed not only that there was a dependency of the presence of capillary pressure in the fracture, but also there was a strong dependency of the distribution of the capillary pressure inside the fracture network on the development of waterfronts during water injection

    Enhanced Oil Recovery in Fractured Reservoirs

    Get PDF

    Pore-scale dynamics for underground porous media hydrogen storage

    Get PDF
    Underground hydrogen storage (UHS) has been launched as a catalyst to the low-carbon energy transitions. The limited understanding of the subsurface processes is a major obstacle for rapid and widespread UHS implementation. We use microfluidics to experimentally describe pore-scale multiphase hydrogen flow in an aquifer storage scenario. In a series of drainage-imbibition experiments we report the effect of capillary number on hydrogen saturations, displacement/trapping mechanisms, dissolution kinetics and contact angle hysteresis. We find that the hydrogen saturation after injection (drainage) increases with increasing capillary number. During hydrogen withdrawal (imbibition) two distinct mechanisms control the displacement and residual trapping – I1 and I2 imbibition mechanisms, respectively. Local hydrogen dissolution kinetics show dependency on injection rate and hydrogen cluster size. Dissolved global hydrogen concentration corresponds up to 28% of reported hydrogen solubility, indicating pore-scale non-equilibrium dissolution. Contact angles show hysteresis and vary between 17 and 56° Our results provide key UHS experimental data to improve understanding of hydrogen multiphase flow behaviour.publishedVersio

    New Insight from Visualization of Mobility Control for Enhanced Oil Recovery Using Polymer Gels and Foams

    Get PDF
    Several enhanced oil recovery (EOR) methods have been designed and developed in the past decades to maintain economic production from mature reservoirs with declining production rates. This chapter discuss mitigation of poor sweep efficiency in layered or naturally fractured reservoirs. EOR methods designed for such reservoirs all aim to reduce flow through highly conductive pathways and delay early breakthrough in production wells. Two approaches within this EOR class, injection of foam and polymer, specifically aim to improve the mobility ratio between the injected EOR fluid and the reservoir crude oil. Reduction in fracture conductivity may be achieved by adding a crosslinking agent to a polymer solution to create polymer gel. This may also be combined with water or chemical chasefloods (e.g. foam) for integrated enhanced oil recovery (iEOR). Polymer gel and foam mobility control for use in fractured reservoirs are discussed in this chapter, and new knowledge from experimental work is presented. The experiments emphasized visualization and in situ imaging techniques: CT, MRI and PET. New insight to dynamic behaviour and local variations in fluid saturations during injections was achieved through the use of complementary visualization techniques

    Hydrogen Relative Permeability Hysteresis in Underground Storage

    Get PDF
    Implementation of the hydrogen economy for emission reduction will require storage facilities, and underground hydrogen storage (UHS) in porous media offers a readily available large-scale option. Lack of studies on multiphase hydrogen flow in porous media is one of the several barriers for accurate predictions of UHS. This paper reports, for the first time, measurements of hysteresis in hydrogen-water relative permeability in a sandstone core under shallow storage conditions. We use the steady state technique to measure primary drainage, imbibition and secondary drainage relative permeabilities, and extend laboratory measurements with numerical history matching and capillary pressure measurements to cover the whole mobile saturation range. We observe that gas and water relative permeabilities show strong hysteresis, and nitrogen as substitute for hydrogen in laboratory assessments should be used with care. Our results serve as calibrated input to field scale numerical modeling of hydrogen injection and withdrawal processes during porous media UHS.publishedVersio

    Obesity wars: hypothalamic sEVs a new hope

    Get PDF
    There are currently several pharmacological therapies available for the treatment of obesity, targeting both the central nervous system (CNS) and peripheral tissues. In recent years, small extracellular vesicles (sEVs) have been shown to be involved in many pathophysiological conditions. Because of their special nanosized structure and contents, sEVs can activate receptors and trigger intracellular pathways in recipient cells. Notably, in addition to transferring molecules between cells, sEVs can also alter their phenotypic characteristics. The purpose of this review is to discuss how sEVs can be used as a CNS-targeted strategy for treating obesity. Furthermore, we will evaluate current findings, such as the sEV-mediated targeting of hypothalamic AMP-activated protein kinase (AMPK), and discuss how they can be translated into clinical application.publishedVersio

    Behavior-dependent selectivity of yellowtail flounder (Limanda ferruginea) in the mouth of a commercial bottom trawl

    Get PDF
    -To improve the efficiency of a commercial bottom trawl for catching yellowtail flounder (Limanda ferruginea), we studied the behavior of individuals in the middle of the trawl mouth. Observations were conducted with a high-definition camera attached at the center of the headline of a trawl, during the brightest time of day in June 2010 off eastern Newfoundland. Behavioral responses were quantified and analyzed to evaluate predictions related to fish behavior, orientation, and capture. Individuals showed 3 different initial responses independent of fish size, gait, and fish density: they swam close to (75%), were herded away from (19%), or moved vertically away from (6%) the seabed. Individuals primarily swam in the direction of initial orientation. No fish were oriented against the trawling direction. Fish in the center of the trawl mouth tended to swim along the bottom in the trawling direction. Only individuals that were stimulated to leave the bottom were caught. Individuals in peripheral locations within the trawl mouth more often swam inward and upward. Fish that swam inward were twice as likely to be caught. Fish size, gait, and fish density did not influence the probability of capture. A trawl that stimulates yellowtail flounder to orient inward and leave the bottom would increase the efficiency of a trawl

    Pore-level Ostwald ripening of CO2 foams at reservoir pressure

    Get PDF
    The success of foam to reduce CO2 mobility in CO2 enhanced oil recovery and CO2 storage operations depends on foam stability in the reservoir. Foams are thermodynamically unstable, and factors such as surfactant adsorption, the presence of oil, and harsh reservoir conditions can cause the foam to destabilize. Pore-level foam coarsening and anti-coarsening mechanisms are not, however, fully understood and characterized at reservoir pressure. Using lab-on-a-chip technology, we probe dense (liquid) phase CO2 foam stability and the impact of Ostwald ripening at 100 bars using dynamic pore-scale observations. Three types of pore-level coarsening were observed: (1) large bubbles growing at the expense of small bubbles, at high aqueous phase saturations, unrestricted by the grains; (2) large bubbles growing at the expense of small bubbles, at low aqueous phase saturation, restricted by the grains; and (3) equilibration of plateau borders. Type 3 coarsening led to stable CO2 foam states eight times faster than type 2 and ten times faster than type 1. Anti-coarsening where CO2 diffused from a large bubble to a small bubble was also observed. The experimental results also compared stabilities of CO2 foam generated with hybrid nanoparticle–surfactant solution to CO2 foam stabilized by only surfactant or nanoparticles. Doubling the surfactant concentration from 2500 to 5000 ppm and adding 1500 ppm of nanoparticles to the 2500 ppm surfactant-based solution resulted in stronger foam, which resisted Ostwald ripening. Dynamic pore-scale observations of dense phase CO2 foam revealed gas diffusion from small, high-curvature bubbles to large, low-curvature bubbles and that the overall curvature of the bubbles decreased with time. Overall, this study provides in situ quantification of CO2 foam strength and stability dynamics at high-pressure conditions.publishedVersio

    Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage

    Get PDF
    Long-term and large-scale H2 storage is vital for a sustainable H2 economy. Research in underground H2 storage (UHS) in porous media is emerging, but the understanding of H2 reconnection and recovery mechanisms under cyclic loading is not yet adequate. This paper reports a qualitative and quantitative investigation of H2 reconnection and recovery mechanisms in repeated injection-withdrawal cycles. Here we use microfluidics to experimentally investigate up to 5 cycles of H2 injection and withdrawal under a range of injection rates at shallow reservoir storage conditions. We find that H2 storage capacities increase with increasing injection rate and range between ∼10% and 60%. The residual H2 saturation is in the same range between cycles (30–40%), but its distribution in the pore space visually appears to be hysteretic. In most cases, the residually trapped H2 reconnects in the subsequent injection cycle, predominantly in proximity to the large pore clusters. Our results provide valuable experimental data to advance the understanding of multiple H2 injection cycles in UHS schemes.publishedVersio

    Unlocking multimodal PET-MR synergies for geoscience

    Get PDF
    The recent combination of positron emission tomography (PET) and magnetic resonance (MR) imaging modalities in one clinical diagnostic tool represents a scientific advancement with high potential impact in geoscientific research; by enabling simultaneous and explicit quantification of up to three distinct fluids in the same porous system. Decoupled information from PET-MR imaging was used here, for the first time, to quantify spatial and temporal porous media fluid flow. Three-dimensional fluid distribution was quantified simultaneously and independently by each imaging modality, and fluid phases were correlated with high reproducibility between modalities and repetitive fluid injections.publishedVersio
    corecore