17 research outputs found
Combined toxicity of graphite-diamond nanoparticles and thiabendazole to Daphnia magna
Carbon-based nanomaterials exhibit unique properties that make them suitable for a wide variety of industrial and biomedical applications. In this work, we studied the acute toxicity of graphite-diamond nanoparticles (GDN) combined with the fungicide thiabendazole (TBZ) to the immobilization of the cladoceran Daphnia magna in the presence and absence of the micro green algae Raphidocelis subcapitata, supplied as food source. The toxicity of GDN to D. magna decreased in the presence of R. subcapitata, while that of TBZ increased, the latter suggesting a carrier effect to TBZ. GDN-TBZ mixtures were fitted to the most common conceptual models applied to mixture toxicity: Concentration Addition (CA), Independent Action (IA) and Combination Index (CI). For GDN-TBZ mixtures in the absence of food the best fit was obtained with dose ratio deviation from CA model, while in the presence of food, dose level deviation from CA gave a better fit. The binary mixtures of GDN and TBZ showed synergistic toxic interactions at low concentrations, which could be attributed to the increased bioavailability of TBZ adsorbed on GDN. For higher concentrations of GDN, the binary mixtures turned antagonistic due to particle agglomeration. Our study provides evidence that deviations from additivity are dose dependent and relevant for the risk assessment of mixtures of nanoparticles with other chemical pollutants.publishe
Microplastic pollution in sublittoral coastal sediments of a North Atlantic island: The case of La Palma (Canary Islands, Spain)
In this work, the microplastic content of sediments collected in July 2020 between 5 and 7 m depth was studied in four locations of La Palma island (Canary Islands, Spain). At each sampling location, three samples were taken parallel to the shoreline. The microplastic content in each sampling corer was studied every 2.5 cm depth after digestion with a H2O2 solution followed by flotation in a saturated NaCl solution. Visualization of the final filtrates under a stereomicroscope revealed that all the sediment samples evaluated contained mostly microfibers (98.3%) which were mainly white/colorless (86.0%) and blue (9.8%), with an average length of 2423 ± 2235 (SD) mm and an average concentration of 2682 ± 827 items per kg of dry weight, being the total number of items found 1,019. Fourier Transform Infrared microscopy analysis of 13.9% (n = 139) of the microfibers also showed that they were mainly cellulosic (81.3%). No significant differences were found between the depths of the sediment. However, significant differences were found between the number of fibers from the sampling sites at the east and west of the island. Such variability could be driven by the winds and ocean mesoscale dynamics in the area. This study confirms the wide distribution of microfibers in sediments from an oceanic island like La Palma, providing their first report in marine sediments of the Canary Islands.En prensa3,20
Stochastic properties of the plant circadian clock
Circadian clocks are gene regulatory networks whose role is to help the organisms to cope with variations in environmental conditions such as the day/night cycle. In this work, we explored the effects of molecular noise in single cells on the behaviour of the circadian clock in the plant model species Arabidopsis thaliana. The computational modelling language Bio-PEPA enabled us to give a stochastic interpretation of an existing deterministic model of the clock, and to easily compare the results obtained via stochastic simulation and via numerical solution of the deterministic model. First, the introduction of stochasticity in the model allowed us to estimate the unknown size of the system. Moreover, stochasticity improved the description of the available experimental data in several light conditions: noise-induced fluctuations yield a faster entrainment of the plant clock under certain photoperiods and are able to explain the experimentally observed dampening of the oscillations in plants under constant light conditions. The model predicts that the desynchronization between noisy oscillations in single cells contributes to the observed damped oscillations at the level of the cell population. Analysis of the phase, period and amplitude distributions under various light conditions demonstrated robust entrainment of the plant clock to light/dark cycles which closely matched the available experimental data
A third genetic locus required for the formation of heterocysts in Anabaena sp. strain PCC 7120.
Mutagenesis of Anabaena sp. strain PCC 7120 with a derivative of transposon Tn5 led to the isolation of a mutant strain, P6, in which heterocysts are not formed (A. Ernst, T. Black, Y. Cai, J.-M. Panoff, D. N. Tiwari, and C. P. Wolk, J. Bacteriol. 174:6025-6032, 1992). Reconstruction of the transposon mutation of P6 in the wild-type strain reproduced the phenotype of the original mutant. Analysis by pulsed-field gel electrophoresis localized the transposition at ca. 3.44 Mb on the physical map of the chromosome of wild-type Anabaena sp. The transposon was situated within an open reading frame (ORF), which we denote hetP, whose wild-type form was cloned and also sequenced. The predicted HetP protein was not found to show significant sequence similarity to other proteins. The mutation in strain P6 could be complemented by a clone of a fragment of wild-type DNA that includes hetP and at least one additional ORF 3' from hetP, but not by a clone that includes hetP as its only ORF. The latter clone proved highly toxic. The phenotype of the P6 mutant may, therefore, be due to a polar effect of the insertion of the transposon. Filaments of strain P6 and of the wild-type strain, when bearing the complementing fragment on a pDU1-based plasmid, showed an increased frequency of clustered heterocysts compared with that of the wild-type strain
A novel Ca 2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120
Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes