740 research outputs found

    Emergence of half-metallicity in suspended NiO chains

    Get PDF
    Contrary to the antiferromagnetic and insulating character of bulk NiO, one-dimensional chains of this material can become half-metallic due to the lower coordination of their atoms. Here we present ab initio electronic structure and quantum transport calculations of ideal infinitely long NiO chains and of more realistic short ones suspended between Ni electrodes. While infinite chains are insulating, short suspended chains are half-metallic minority-spin conductors which display very large magnetoresistance and a spin-valve behaviour controlled by a single atom.Comment: 5 pages, 4 figures; accepted version; minor changes in introduction and reference

    Transport in magnetically ordered Pt nanocontacts

    Get PDF
    Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i. e., those forming the atom-sized neck. In contrast to previous work, we thus find that the electronic transport can be spin-polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.Comment: 4 pages, 3 figure

    Early recognition by Ball and Hooker in 1878 of plant back-colonization (boomerang) events from Macaronesia to Africa

    Get PDF
    Recent work in island biogeography has shown that back-colonization (‘boomerang’ events) from islands to continents have occurred more frequently than previously understoodWe report possibly the earliest inference of this pattern, by John Ball and Joseph Dalton Hooker in a book published in 1878

    Single exciton spectroscopy of semimagnetic quantum dots

    Get PDF
    A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is considered. The effects of spin-exciton interactions and the resulting multi-spin correlations on the photoluminescence are calculated by numerical diagonalization of the Hamiltonian, including exchange interaction between electrons, holes and Mn spins, as well as spin-orbit interaction. The results provide a unified description of recent experiments of photoluminesnce of dots with one and many Mn atoms as well as optically induced ferromagnetism in semimagnetic nanocrystals.Comment: 5 pages, 3 figure

    The determinants of the quality of Sales-Marketing Interface in a Multinational Customer Brand Focused Company: The Latin American Branches

    Get PDF
    Customer evolution and changes in consumers, determine the fact that the quality of the interface between marketing and sales may represent a true competitive advantage for the firm. Building on multidimensional theoretical and empirical models developed in Europe and on social network analysis, the organizational interface between the marketing and sales departments of a multinational high-growth company with operations in Argentina, Uruguay and Paraguay is studied. Both, attitudinal and social network measures of information exchange are used to make operational the nature and quality of the interface and its impact on performance. Results show the existence of a positive relationship of formalization, joint planning, teamwork, trust and information transfer on interface quality, as well as a positive relationship between interface quality and business performance. We conclude that efficient design and organizational management of the exchange network are essential for the successful performance of consumer goods companies that seek to develop distinctive capabilities to adapt to markets that experience vertiginous change

    Electronic Structure of gated graphene and graphene ribbons

    Get PDF
    We study the electronic structure of gated graphene sheets. We consider both infinite graphene and finite width ribbons. The effect of Coulomb interactions between the electrically injected carriers and the coupling to the external gate are computed self-consistently in the Hartree approximation. We compute the average density of extra carriers, n2Dn_{2D}, the number of occupied subbands and the density profiles as a function of the gate potential VgV_g. We discuss quantum corrections to the classical capacitance and we calculate the threshold VgV_g above which semiconducting armchair ribbons conduct. We find that the ideal conductance of perfectly transmitting wide ribbons is proportional to the square root of the gate voltage.Comment: 8 pages, 6 figure

    Hydrogenated Graphene Nanoribbons for Spintronics

    Get PDF
    We show how hydrogenation of graphene nanoribbons at small concentrations can open new venues towards carbon-based spintronics applications regardless of any especific edge termination or passivation of the nanoribbons. Density functional theory calculations show that an adsorbed H atom induces a spin density on the surrounding π\pi orbitals whose symmetry and degree of localization depends on the distance to the edges of the nanoribbon. As expected for graphene-based systems, these induced magnetic moments interact ferromagnetically or antiferromagnetically depending on the relative adsorption graphene sublattice, but the magnitude of the interactions are found to strongly vary with the position of the H atoms relative to the edges. We also calculate, with the help of the Hubbard model, the transport properties of hydrogenated armchair semiconducting graphene nanoribbons in the diluted regime and show how the exchange coupling between H atoms can be exploited in the design of novel magnetoresistive devices

    Coherent transport in graphene nanoconstrictions

    Get PDF
    We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zig-zag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2/h(2n+1) e^2/h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present non-conducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards the formation of quantum dots in graphene is discussed.Comment: 9 pages, 9 figure

    Magnetic and orbital blocking in Ni nanocontacts

    Get PDF
    We address the fundamental question of whether magneto-resistance (MR) of atomic-sized contacts of Nickel is very large because of the formation of a domain wall (DW) at the neck. Using {\em ab initio} transport calculations we find that, as in the case of non-magnetic electrodes, transport in Ni nanocontacts depends very much on the orbital nature of the electrons. Our results are in agreement with several experiments in the average value of the conductance. On the other hand, contrary to existing claims, DW scattering does {\em not} account for large MR in Ni nanocontacts.Comment: 5 pages, 3 Figure

    Electronic structure and transport properties of atomic NiO spinvalves

    Get PDF
    Ab-initio quantum transport calculations show that short NiO chains suspended in Ni nanocontacts present a very strong spin-polarization of the conductance. The generalized gradient approximation we use here predicts a similiar polarization of the conductance as the one previously computed with non-local exchange, confirming the robustness of the result. Their use as nanoscopic spinvalves is proposed.Comment: 2 pages, 1 figure; accepted in JMMM (Proceedings of ICM'06, Kyoto
    corecore