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We study the electronic structure of gated graphene sheets. We consider both infinite graphene and finite
width ribbons. The effect of Coulomb interactions between the electrically injected carriers and the coupling to
the external gate are computed self-consistently in the Hartree approximation. We compute the average density
of extra carriers n2D, the number of occupied subbands, and the density profiles as a function of the gate
potential Vg. We discuss quantum corrections to the classical capacitance and we calculate the threshold Vg

above which semiconducting armchair ribbons conduct. We find that the ideal conductance of perfectly trans-
mitting wide ribbons is proportional to the square root of the gate voltage.

DOI: 10.1103/PhysRevB.75.205441 PACS number�s�: 73.22.�f, 73.20.�r, 73.23.�b

I. INTRODUCTION

One important ingredient of semiconductor microelec-
tronics is the electrical tunability of the resistance through
the field effect. The recent demonstration of field effect in
graphene1–5 has opened a new research venue. Graphene is
different from conventional semiconductors for a number of
reasons. First, graphene is a truly two-dimensional atomi-
cally thin layer of carbon atoms. Second, neutral graphene is
a semimetal with zero density of states at the Fermi energy
and zero gap, the two scales that shape the properties of
metals and semiconductors. Third, the electronic structure
close to the Fermi energy has a conical shape with perfect
electron-hole symmetry and an internal valley symmetry, iso-
morphic to that of two-dimensional massless Dirac
fermions.6 As a result, most of the standard lore on electronic
and transport properties of low dimensional semiconductors
needs to be revisited.7–10

The presence of a band gap in the electronic structure is
crucial in the design of low-dimensional structures and in the
achievement of large on-off resistance ratios in field effect
transistors �FETs�. However, even at very low temperatures,
two-dimensional graphene shows a rather low resistance at
the charge neutrality point1,3,4,10 at which the density of
states at the Fermi energy is vanishingly small. A number of
physical mechanisms that result in a gap in graphene based
systems have been proposed: dimensional confinement into
the so-called graphene ribbons,11–15 interlayer coupling,16,17

and spin polarization.18 In this paper we focus on graphene
ribbons, stripes of graphene with finite width W. Ideal
graphene ribbons with edges along the crystallographic axis
fall into two categories: zig-zag and armchair.11 Only the
former can present a gap depending on their width W. Recent
transport experiments with graphene ribbons19,20 confirm that
ribbons with W=20 nm present a thermally activated con-
ductivity that indicates the presence of a gap. Most likely,
imperfections on the edges of real ribbons make it hard to
fabricate ribbons that are intrinsically metallic.

In this paper we explore the relation between gate voltage
VG and injected density in graphene-based field effect de-
vices shown in Fig. 1. A graphene layer, of width W, lies on
top of an insulating slab of thickness d which lies above the

metallic gate. Application of a gate voltage VG injects carri-
ers in the graphene layer accompanied by a corresponding
change in the metal. The main results of the paper are the
following: �i� we show that VG and the average two-
dimensional �2D� carrier density in the system n2D satisfy the
relation

VG =
1

Cel
en2D + VQ�n2D� , �1�

where the first term arises from the classical electrostatic
interaction and the second term VQ�n2D� arises from quantum
mechanical effects associated to the band structure of
graphene. The classical contribution is dominant but it de-
pends only on the geometry of the system. Although smaller,
the second term contains information specific to the elec-
tronic structure of the system.21 �ii� We find that in 2D
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FIG. 1. �Color online� �a� Graphene based FET device: lateral
view. A graphene ribbon of width W is separated from the metallic
gate by an insulating slab of thickness d. The real charges of the
metal are accumulated in the metal-insulator interface underneath
the ribbon. Image charges lie further down the surface, at a distance
2d from the graphene. �b� Top view of an armchair graphene rib-
bon. The system is infinite along the vertical direction �y axis�. �c�
Detail of the superunit cell defining the periodic one dimensional
armchair ribbon.
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graphene the quantum contribution scales as VQ��n2D, and
from its measurement it would be simple to extract the linear
slope of the graphene bands. �iii� In the case of ribbons we
calculate the VG�n2D� curves for different widths W and we
find the threshold gate above which semiconducting ribbons
become metallic. �iv� We argue that the ideal conductance G
in wide ribbons scales as G=�VG.

The rest of this manuscript is organized as follows. In
Sec. II we describe the Hartree formalism that we use to
calculate the electronic structure of gated graphene devices
as well as the link between gate voltage and chemical poten-
tial. In Sec. III we present the simple analytical solution of
the self-consistent Hartree equation for planar graphene �W
=��. We obtain an expression for the quantum capacitance
of graphene and discuss the experimental implications. In
Sec. IV we present the numerical solution of the self-
consistent Hartree equation for finite width armchair ribbons,
both semiconducting and metallic, and we obtain n2D and the
conductance G as a function of W, and VG. In Sec. V we
discuss the implications and present our conclusions.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

We write the Hamiltonian for electrons in graphene as the
sum of two parts H0+U. The first term describes the elec-
tronic structure of neutral graphene. We approximate H0 by
the standard one-orbital tight-binding approximation for both
the 2D graphene layer22 and graphene ribbons.11,14,24 The
model is completely defined by the positions of the atoms,
the first-neighbors hopping, t=−2.5 eV, the lattice constant
a=2.42 Å, and the average density. The lattice of two-
dimensional graphene is characterized by a crystal structure
defined by the two unit vectors a�±= a

2 ��3, ±1� with a two
atom basis. We assume that the graphene atoms lie in the z
=0 plane. In the case of neutral graphene, the average den-
sity is one electron per orbital that corresponds to a Fermi
energy EF=0, since we take the on-site energy level equal to
zero. The armchair ribbons considered in this paper are gen-
erated by one-dimensional repetition of the supercell of Fig.
1�b�, along the y axis, with periodicity �3a. The supercell
itself is constructed as the repetition of along the direction �1,
0� of a block with four atoms �Fig. 1�c��. If the supercell has
N blocks, the width of the ribbon is given by W=Na and the
number of atoms in the unit cell as 4N. As a rule of thumb, it
is useful to write W��N /4� nm.

The second term U describes the Coulomb interaction be-
tween the extra charges in the system

U = e� �n̂�r���ext�r��dr� +
e2

2�
� �n̂�r���n̂�r�� �

�r� − r���
dr� dr�� , �2�

where �n̂�r�� is the operator describing the departure of the
local the electronic density from charge neutrality

�n̂�r� � 	
I,�

��I�r��2�cI,�
† cI,� − n0� . �3�

Here the sum runs over all the atoms in the lattice and �I�r�
denotes the �z atomic orbital centered around the atom I and

cI,�
† is the second quantization operator that creates one elec-

tron with spin � in the orbital �I�r�, localized around atom I.
In Eq. �3� n0=1/2 is the number of electrons per site and per
spin in neutral graphene.

The electrostatic potential created by the extra charges in
the metallic gate is denoted by �ext�r��. Considered as a
whole, the graphene and the metal layer form a neutral sys-
tem. Therefore, the extra carriers in one side are missing in
the other. Since the charges in the metallic gate move as to
cancel the electric field inside the metal, they depend on the
density distribution in the graphene electrode, which in turn
depends on �ext�r��. This self-consistent problem is solved
using the image method: for a given charge density profile in
the graphene, e
�n̂�r��� the potential created by the corre-
sponding extra charges in the metal is given by a distribution
of fictitious image charges inside the metal �see Fig. 1�:
−e�nim�r��=−e�n�r�−2d�� with d� = �0,0 ,d�:

Vext�r�� = −
e

�
� 
�n̂�r�� ��

�r� − r�� + 2d� �
dr�� . �4�

It must be pointed out that the image charges are a math-
ematical construct which provide a simple way to obtain a
solution of the electrostatic problem which automatically sat-
isfies that the surface of the metallic gate is a constant po-
tential surface, as expected for a metal. With this method the
potential evaluated at the metal gate �z=d� is exactly zero.
Therefore, the potential difference between the metal-
insulator interface and the graphene layer is the potential
evaluated at the graphene layer.

B. Hartree approximation

The electronic repulsion is treated in the Hartree approxi-
mation. Therefore, the electrons feel the electrostatic poten-
tials created by both the gate and themselves:

Û � ÛSC = e� �n̂�r���Vext�r�� + VSC�r���dr� . �5�

The argument of the integral VT�Vext+VSC, can be written
as

VT�r�� =
e

�
� 
�n�r�� ��K��r� − r���,d�dr��, �6�

where

K��r� − r���,d� =
1

�r� − r���
−

1

�r� − r�� + 2d� �
. �7�

In the Hartree approximation H0+USC is a one-body
Hamiltonian that can be represented in the basis of localized
�z atomic orbitals. The H0 part yields the standard single
orbital tight-binding Hamiltonian. In contrast, the USC intro-
duces site-dependent shifts in the diagonal matrix elements

UI = eVI =
1

�
	

J

qJvIJ, �8�

where qJ is the average excess charge in site J and vIJ
=dr�dr����I�r���2��J�r����2K��r�−r��� ,d�, is the potential created
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by an unit charge located at site J on site I. At this point we
adopt an approximation which permits to evaluate VIJ with-
out a detailed model of �I�r��. Since the atomic orbitals are

highly localized, for �R� I−R� J�	a we can approximate vIJ by
the first term in the multipolar expansion �see Appendix A�:
vIJ� 1

�R� I−R� J�
− 1

�R� I−R� J−2d� �
. We have verified that the potential in a

given site is quite independent of the approximation adopted
to evaluate the I=J contribution, for which the monopolar
approximation fails. Without sacrificing accuracy, we adopt
the simplest strategy of removing that term from the sum.

The Schrödinger equation reads

�H0 + USC��
� = �
�
� , �9�

where the eigenvectors �
� are linear combinations of atomic
orbitals �
�=	ICI,
��I ,��, and the coefficients are indepen-
dent of the spin because we only consider nonmagnetic so-
lutions. In turn, the distribution of excess charges depends on
the eigenvalues and eigenvectors through the equation

qJ = e�	

,�

��CI,
�2f��
�� − 1� , �10�

where f��
� is the Fermi function.
Equations �8�–�10� need to be solved iteratively. In each

step of the iterative procedure we have an input distribution
of extra charge qI which results in a potential �Eq. �8��,
which defines a Hamiltonian whose eigenstates �Eq. �9�� re-
sult in an output distribution of extra charge �Eq. �10��. The
converged solution is such that the input and output distribu-
tion of charges are the same. We refer to that distribution and
the corresponding Hamiltonian as the self-consistent solu-
tion.

C. Gate voltage, chemical potential, and quantum capacitance

In real field effect devices, application of a gate voltage
VG results in a change of carrier density in the active layer. In
our theoretical framework, we define eVG as the chemical
potential difference between the metallic backgate and the
graphene ribbon, necessary to accommodate extra carriers
�either holes or electrons� in graphene and remove them from
the metallic backgate

eVG�n2D� = �graphene − �metal, �11�

where n2D is the average two-dimensional density of extra
carriers. In general, there are two contributions to the depen-
dence of the chemical potential on n2D. On one side, the
presence of the electrostatic potential created by extra carri-
ers present both in graphene and the metallic backgate shifts
and modifies the bands. We refer to the new bands as the
Hartree bands. On the other, addition of new carriers in-
volves an additional shift of the chemical potential with re-
spect to the Hartree bands. Whereas the first contribution has
a classical origin, the second is a consequence of the Pauli
principle and we refer to it as quantum contribution to the
capacitance. We neglect a third type of contribution, arising
from the modification of the bands due to density dependent
exchange and correlation contributions.21

The extra carriers in the metallic gate are concentrated on
the surface so that the bulk chemical potential and the bulk

energy bands are shifted by the same amount: there is no
quantum contribution to the capacitance coming from the
bulk metal. Things are different in the graphene layer. In this
case, it makes no sense to talk about bulk and surface as
different objects. In graphene, the chemical potential has to
shift relative to the modified bands in order to accommodate
extra carriers, resulting in a nonzero quantum contribution to
the capacitance. Without loss of generality we take the me-
tallic side as the reference for the electrostatic contribution to
the chemical potential. This permits us to write

eVG = �graphene�n2D� − �graphene�0� � � − �0. �12�

From an operational point of view, we consider the system to
be at zero temperature, and we take the chemical potential of
graphene at a given density as the lowest unoccupied eigen-
state of the self-consistent Hamiltonian. Identical results are
obtained from the equation

n2D = �
−�

�

�SC�E�dE − �
−�

�0

�0�E�dE �13�

that relates the chemical potential � to the extra density and
the density of states both of the neutral �0 and charged �SC
cases.

III. CLASSICAL AND QUANTUM CAPACITANCE
OF PLANAR GRAPHENE

In the case of 2D graphene all the atoms of the lattice are
equivalent and therefore the extra charge qI and the effective
potential UI are independent of the location. As a matter of
fact, for an average extra density n2D, the electrostatic poten-
tial is UI=

4�e2

� n2Dd�eVC. Therefore, the Hartree bands of
charged graphene are equal to the bare bands plus a rigid
shift

E�k�� = �
0�k�� +

4�e2

�
n2Dd = �

0�k�� + eVC. �14�

In Fig. 2 �left panels� we plot both the bare bands �
0�k�� and

the Hartree bands E�k�� for d=300 nm and a n2D

=1012 cm−2. We see that Hartree bands are shifted upwards.
As a consequence of Eq. �14�, we can write the density of
states of the self-consistent Hamiltonian

�SC�E� = �0�E − eVC� . �15�

Notice that the Dirac point of the Hartree bands is located at
E=eVC.

The shift in the chemical potential needed to accommo-
date the extra charge n2D will have to account for the elec-
trostatic shift eVC of the bands. On top of that, the chemical
potential needs to move away from the Dirac point, which is
also shifted electrostatically. Therefore, the chemical poten-
tial of charged graphene is written as

� = �0 + eVC + eVQ. �16�

We now obtain an expression for eVQ valid when n2D�n0

�3.9 1015 cm−2, so that the chemical potential lies in the
zone where the band dispersion is linear and the density of
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states is linear in the energy �0�E�= 8
3�t2a2 �E�. Now we com-

bine Eqs. �13� and �15�, and we have �see Appendix B�

n2D = �
�0+eVC

�

�SC�E�dE = �
�0

�0+eVQ

�0�E�dE . �17�

These equations have a physically transparent meaning: the
extra carrier density is related to the occupation of new states
in a window of width eVQ above the Dirac point in the den-
sity of states. From the third term in the equation it is par-
ticularly simple to obtain the important relation between the
extra carrier density and the quantum contribution to the
chemical potential

n2D =
8

3�

1

2t2a2 �eVQ�2, �18�

where, without loss of generality, we have taken �0=0.
Combining this equation together with Eqs. �12� and �16�,
we obtain one of the important results of this work

eVG = � − �0 =
4�e2

�
dn2D + �t��6�n2Da2

8
. �19�

Thus, we write the gate voltage as the sum of two terms.
The first is the standard electrostatic contribution whereas
the second is related to the density of states of graphene. We

refer to the second VQ as the quantum contribution to the
gate voltage �or inverse capacitance�. In most of devices so
far1,3,4,10 d�300 nm, which makes the electrostatic contribu-
tion much larger than the quantum contribution. In Fig. 2�b�
we plot VG vs n2D, according to Eq. �19�. In spite of the last
term of Eq. �19�, the curve looks similar to a straight line. As
in Refs. 3 and 4 we have done a linear fit of Fig. 2�b� ob-
taining n2D=
VG with 
=0.718�1011 V−1 cm−2, in very
good agreement with the experiments. In order to reduce the
electrostatic contribution as much as possible, in Fig. 2�c� we
consider a thinner dielectric �d=30 nm� with a much larger
dielectric constant �=47.23 We see how in this case the gate
voltage �solid line� is significantly different from the electro-
static contribution �dashed line�. In Fig. 2�d� we plot the
quantum contribution, which is independent of � and d,
alone. Although much smaller than the classical term, it can
be larger than 0.2 V and it should be possible to measure it.
Therefore, the independent measurement of n2D, via classical
Hall effect, and VG could provide a direct measurement of
the slope of the bands in the linear region if the experimental
results are fitted using Eq. �19�.

IV. SELF-CONSISTENT ELECTRONIC STRUCTURE
OF ARM-CHAIR RIBBONS

A. Bands and charge profiles

We now consider finite width armchair ribbons.25 They
are different from two-dimensional graphene both because
their electronic structure and their electrical capacitance.
Armchair ribbons are metallic �Figs. 3�b� and 3�d�� when the
width of the sample has the form W= �3M +1�a0, with M an
integer, and insulating otherwise �Figs. 3�a� and 3�c��. In
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both case the electronic structure is different of the semime-
tallic behavior of 2D graphene. On the other side, the pres-
ence of edges breaks translational invariance along the direc-
tion perpendicular to the ribbon axis. The edges provide a
natural surface to accommodate the extra electrons. There-
fore, the local potential and the extra charge profile are ex-
pected to vary as a function of the distance to the ribbon
edge, keeping their translational invariance along the ribbon
axis. This makes it harder to separate classical and quantum
contributions to the capacitance in simple terms.

In Fig. 3 we show both the self-consistent �upper panels�
and the neutral �lower panels� bands for electrically doped
ribbons in two cases, semiconducting and a metallic �N=9
and N=10, respectively�. Notice that charge neutral bands
have electron-hole symmetry, similar to the semiconducting
carbon nanotubes.26 In those figures we plot the self-
consistent chemical potential in the upper panels and the
naive Fermi energy obtained upon integration of the neutral
density of states. As in the case of 2D graphene, the electrical
injection of extra carrier results in a large shift of the bands,
due to the electrostatic interactions. In contrast to the 2D
case, the inhomogeneity of the electronic density and the
electrostatic potential result in a moderate change of the
shape of the bands. Notice for instance that for the N=9
ribbon the chemical potential intersects 2 self-consistent
bands whereas the naive Fermi energy intersects three neu-
tral bands.

As in the two-dimensional case, the self-consistent chemi-
cal potential can be interpreted as the sum of a large electro-
static shift and a smaller quantum shift with respect to the
self-consistent bands, necessary to accommodate the extra
carriers. However, the electrostatic contribution to the gate
depends not only on the average to density n2D, as in the 2D
case, but also on the detailed profile qI. As a result, the sepa-
ration of the chemical potential in two contributions, electro-
static and quantum mechanical, does not yield a simple pro-
cedure to obtain information of the bands of gated graphene
ribbons, in contrast to the simpler 2D case.

In Fig. 4 we show the self-consistent density profile qI and
the self-consistent electric potential UI for a the semicon-
ducting ribbon N=9 with two different n2D. We see how the
density of carriers is larger in the edges than in the middle of
the ribbon, as expected in a conducting system. As a result,
the electrostatic potential has an inverted U shape. Super-
posed with these overall trends, both qI and UI feature oscil-
lations, arising from quantum mechanical effects. Expect-
edly, the average UI is much larger in the high density than in
the low density. In the high density case it is apparent that
the potential is flat in the inner part of the ribbon, very much
like in a metal. Very similar trends are obtained for ribbons
with different widths.

B. Density vs VG

In Fig. 5�a� we plot the gate versus the average 2D extra
density in graphene ribbons with for different widths N, in-
dicated in the figure. This can be a valuable information to
estimate the carrier density in gated ribbons since Hall mea-
surements in narrow ribbons might be difficult to perform.

The common feature in all the curves is the linear relation
between VG and n2D that reflects the dominance of the clas-
sical electrostatic contribution over quantum effects, exactly
as in the 2D case. This is also apparent from Fig. 3, where
the shift of the bands is much larger than the Fermi energy
with respect to the bottom of the conduction bands. In addi-
tion, we see that some of the curves do not intersect at VG
=0 for n2D=0 in the case of semiconducting ribbons. This is
clearly the case of N=9 and N=20. In contrast, the curve
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N=10 extrapolates to zero. We denote the threshold gate po-
tential as Vth. and we notice that it corresponds to the change
in chemical potential of the ribbon when a single electron is
added. Since the chemical potential for a semiconductor sys-
tem lies in the middle of the gap and the chemical potential
when a single electron is added is the lowest energy state of
the conduction band, we must have eVth=

Eg

2 , where Eg is the
gap of the semiconducting ribbon. We fit all the curves in
Fig. 5�a� according to

n2D�N� = 
�N��VG − Vth�N�� . �20�

In Figs. 5�b� and 5�c� we plot 
 and Vth as a function of the
ribbon width N. The wider ribbon considered has N=60
which corresponds to W=14.5 nm. In Fig. 5�b� we see how

 rapidly decreases towards the 2D value 
= e2d

� =0.7
�1011 cm−2 V−1 as W increases. We have verified that 

scales inversely proportional to the width N. Interestingly,

�N� approaches to the two-dimensional case very quick,
even if W�d. The evolution of Vth as a function of N reflects
two facts: on one side, two out of three ribbons are semicon-
ducting. On the other, the gap decreases as W−1. The evolu-
tion of the gap as a function of W in the one-orbital tight-
binding calculation similar, but not identical, to that obtained
with density functional calculations.18 Notice that ribbons of
W=20 nm �N�80� still present a gap19,20 and, according to
Fig. 5�b�, their capacitance is almost that of two-dimensional
graphene. It must be pointed out that Eq. �20� takes in to
account the capacitive coupling to the gate electrode but
leaves out the capacitive coupling to source and drain elec-
trodes normally present in the system.

C. Ideal conductance vs VG

We now study the number of occupied bands N in a given
ribbon as a function of VG. This is related to ideal conduc-
tance a function of VG through the Landauer formula for
perfectly transmitting ribbons

G =
2e2

h
N . �21�

This is equivalent to neglect the effect of disorder in the
system. Therefore, the value of conductance so obtained can
be considered an upper limit for the real conductance in the
system.24 In an ideal armchair ribbon the number of channels
N increases one by one as Fermi energy with respect to the
Dirac point is increased. Our approach permits to obtain both
N and the quantum shift of the chemical potential as a func-
tion of the gate voltage and to plot N as a function of VG.

It must be stressed that in the 2D case this disorder free
model8 accounts for the experimental results.3 This might
indicate that either disorder is not present in the samples or,
more likely, because of the suppression of the backscattering
it does not affect significantly the transport properties of
graphene.8 Transport on 2D graphene is being extensively
studied by a number of groups. The effect of imperfections
on the transmission of otherwise ideal graphene ribbons has
also been studied by a number of groups.24

In Fig. 6 we plot G�VG� for various ribbons. In Fig. 6�a�

we plot the conductance G�VG� for two narrow ribbons �N
=9 and N=10� in the small gate regime. It is apparent that
the N=9 ribbon only conducts above a threshold gate
whereas the N=10 ribbon conducts even for VG=0. There-
fore, semiconducting ribbons can be electrically tuned from
insulating to conducting behavior with a gate voltage. This is
also different from the case of 2D graphene which has a
rather low resistance in the charge neutrality point. In Fig.
6�b� we show the conductance for the same ribbons at higher
VG. The different sizes of the plateaus for N=9 and N=10
reflect the different structure of the bands, as seen in Fig. 3.
In Figs. 6�c� and 6�d� we show the conductance for wider
ribbons �N=40 and N=60, respectively�. Although the shape
of the curves is superficially similar for all these ribbons, the
VG necessary to have a fixed number of bands at the Fermi
energy is a decreasing function of W. This is a consequence
of quantum confinement: the smaller the ribbon the larger the
subband level spacing �En=En�k=0�−En−1�k=0�. A shift of
the Fermi energy, relative to the self-consistent bands, by an
amount �En, so that a new band is available for transport,
implies also an electrostatic overhead, due to the change in
density, which accounts for most of the eVG, as we have
discussed above.

In average, the steps in the stepwise curve N�VG� increase
size as VG increases. This trend is more apparent in wider
ribbons. In this sense it can be said that N is sublinear in VG.
In the limit of very wide ribbons, for which the density of
states is almost 2D, we can derive a qualitative relation be-
tween number of channels and VG. The number of conduct-
ing modes N�EF� is proportional to the perimeter of the
Fermi circle, which is 2�eVQ, i.e., N�VQ. On the other side,
we have seen that in 2D VQ scales as �n2D, whereas VG
scales linearly �Figs. 2 and 5�. As a result we have

N � VQ � �VG. �22�

In Figs. 6�c� and 6�d� we have fitted the numerical data to the
curve G=aVG

b , where a and b are fitting parameters. We have
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FIG. 6. �Color online� Conductance as a function of VG for
ribbons with N=9 and N=10 �a� and �b�, N=40 �c�, and N=60 �d�
�see text�.
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obtained exponents b=0.45 and b=0.47 for N=40 and N
=60, respectively, in agreement with the qualitative discus-
sion above. In Figs. 6�c� and 6�d� the solid line is the best
fit to the equation G=a�VG. Equation �22� is a restatement of
the relation between VQ and n2D of Eq. �19�. In both cases
the exponent 1 /2 comes from the linear relation between
energy and momentum of the two-dimensional carriers on
one side, and the quadratic relation between n2D and Fermi
momentum on the other. Therefore, Eqs. �19� and �22� are
specific predictions related to the peculiar Dirac-like spec-
trum of electrons in graphene.

V. DISCUSSION AND CONCLUSIONS

In this work we study how the electronic structure and the
density of carriers of graphene-based field effect transistors
evolve as a gate voltage VG is applied. An important notion is
the identification of eVG as the change in chemical potential
in the graphene layer necessary to accommodate the density
of extra carriers n2D. The change in chemical potential is the
sum of a electrostatic contribution, independent of the details
of the electronic structure of graphene and a quantum con-
tribution that depends on the details of the graphene band
structure. In the case of 2D graphene, we have obtained a
particularly simple equation �19� relating these quantities.
We find that the quantum contribution is sufficiently small as
to go unnoticed in the experiments done so far,1,3,4 but suf-
ficiently big as to be measured. Even more important, we
claim that an independent measurement of n2D and VG would
provide a direct measurement of the slope of the linear en-
ergy bands, the so called graphene “speed of light.”

We have considered idealized armchair ribbons which, at
the charge neutrality point, can be either semiconducting or
metallic. Application of a eVG equal to half the band-gap
turns semiconducting ribbons into conductors. This affords a
on/off ratio much larger than that of 2D graphene. In the case
of graphene ribbons the classical contribution to capacitance
depends on the charge density profile qI in the ribbon �Fig.
3�, which cannot be measured easily, and we cannot provide
a simple experimental procedure to extract information about
the electronic structure of the ribbons out of the VG�n2D�
curves. We find that density of extra carriers is higher in the
edges of the ribbons than in the middle.

Future work should address the issue of the stability of the
results obtained in this paper with respect to disorder. In
particular, we expect that disorder will turn metallic ribbons
into semiconducting at VG=0. In Fig. 3 it is apparent that the
metallic character of the ribbon with N=10 comes from the
states lying in a narrow window of width �kx around kx=0 in
momentum states. These states would disappear if the ribbon
size along the x axis is smaller than 1

�kx
.

In conclusion, we have studied the electronic structure of
gated graphene and graphene ribbons in the Hartree approxi-
mation. This permits to include the Coulomb repulsion be-
tween the extra carriers and their coupling to the external
gate in a self-consistent manner. We find �Eq. �19�� a small
departure from the classical linear result VG�n2D which can
provide a simple method to measure the slope of the
graphene bands. In the case of semiconducting armchair rib-

bons we have obtained the inhomogeneous distribution of
charge carriers qI and potential UI along the section of the
ribbon. We also find that a finite gate potential eVG equal to
at least half their band-gap is necessary to make them con-
duct.
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APPENDIX A: EVALUATION OF COULOMB INTEGRALS

In this appendix we describe the approximations involved
in the evaluation of the Coulomb matrix elements:

vIJ =� dr� dr����I�r���2��J�r����2K��r� − r���,d� . �A1�

We define the charge cloud associated to the orbital in site I
as �I�r�����I�r���2. Notice that the charge cloud �I is zero

everywhere except in the neighborhood of r�=R� I. We define

x� =r�−R� I, x��=r��−R� J�I�r��=�0�x��, and �J�r���=�0�x��� so that
we write

vIJ =� dx� dx���0�x���0�x���K�x� − x��,d� , �A2�

where

K =
1

�R� IJ + x� − x���
−

1

�R� IJ − 2d� + x� − x���
�A3�

and R� IJ�R� I−R� J. Now we make use of the fact that �R� IJ�
� �x�� , �x��� to approximate

K �
1

�R� IJ�
−

1

�R� IJ − 2d� �
+ M , �A4�

where M is the rest of the multipolar expansion, whose first
term is the dipolar term

M =
�x� − x��� · R� IJ

�RIJ�3
−

�x� − x��� · �R� IJ − 2d��

�RIJ − 2d� �3
+ ¯ . �A5�

Since the atomic orbitals are normalized, dx� �0�x��=1 we
obtain

vIJ �
1

�R� IJ�
−

1

�R� IJ − 2d� �
+ ¯ . �A6�

The next terms in the expansion are the dipole-dipole terms,
which are functionals of the specific orbital �. Notice that
the dipolar coupling decays much more rapidly as a function
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of distance. Therefore, we only keep the dominant monopo-
lar term in the series.

APPENDIX B: DERIVATION OF EQ. (17)

The starting point is Eq. �13�. Replacing in the first inte-
gral �SC�E�=�0�E−eVC�, and performing the change of vari-
able E�=E−eVC we have

n2D = �
−�

�−eVC

�0�E�dE − �
−�

�0

�0�E�dE . �B1�

From Eq. �16� we write �−eVC=�0+eVQ and we simplify
this expression to

n2D = �
�0

�0+eVQ

�0�E�dE �B2�

which is one of the two results in Eq. �17�. The other is
obtained analogously, starting with Eq. �13�, replacing in the
second integral �0�E�=�SC�E+eVC�, performing the change
of variable E�=E+eVC in the second integral and adding the
two integrals up:

n2D = �
�0+eVC

�

�SC�E�dE . �B3�

Notice that in the two expressions the integration interval has
the same length eVQ=�− ��0+eVC�.
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