19 research outputs found

    TCR signal strength controls thymic differentiation of discrete proinflammatory gamma delta T cell subsets

    Get PDF
    The mouse thymus produces discrete gd T cell subsets that make either interferon-g (IFN-g) or interleukin 17 (IL-17), but the role of the T cell antigen receptor (TCR) in this developmental process remains controversial. Here we show that Cd3g+/− Cd3d+/− (CD3 double-haploinsufficient (CD3DH)) mice have reduced TCR expression and signaling strength on gd T cells. CD3DH mice had normal numbers and phenotypes of ab thymocyte subsets, but impaired differentiation of fetal Vg6+ (but not Vg4+) IL-17- producing gd T cells and a marked depletion of IFN-g-producing CD122+ NK1.1+ gd T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-g+ gd T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory gd T cell subsets and their impact on pathophysiology

    Neuroblastoma RAS viral oncogene homolog (N-RAS) deficiency aggravates liver injury and fibrosis.

    Get PDF
    Progressive hepatic damage and fibrosis are major features of chronic liver diseases of different etiology, yet the underlying molecular mechanisms remain to be fully defined. N-RAS, a member of the RAS family of small guanine nucleotide-binding proteins also encompassing the highly homologous H-RAS and K-RAS isoforms, was previously reported to modulate cell death and renal fibrosis; however, its role in liver damage and fibrogenesis remains unknown. Here, we approached this question by using N-RAS deficient (N-RAS-/-) mice and two experimental models of liver injury and fibrosis, namely carbon tetrachloride (CCl4) intoxication and bile duct ligation (BDL). In wild-type (N-RAS+/+) mice both hepatotoxic procedures augmented N-RAS expression in the liver. Compared to N-RAS+/+ counterparts, N-RAS-/- mice subjected to either CCl4 or BDL showed exacerbated liver injury and fibrosis, which was associated with enhanced hepatic stellate cell (HSC) activation and leukocyte infiltration in the damaged liver. At the molecular level, after CCl4 or BDL, N-RAS-/- livers exhibited augmented expression of necroptotic death markers along with JNK1/2 hyperactivation. In line with this, N-RAS ablation in a human hepatocytic cell line resulted in enhanced activation of JNK and necroptosis mediators in response to cell death stimuli. Of note, loss of hepatic N-RAS expression was characteristic of chronic liver disease patients with fibrosis. Collectively, our study unveils a novel role for N-RAS as a negative controller of the progression of liver injury and fibrogenesis, by critically downregulating signaling pathways leading to hepatocyte necroptosis. Furthermore, it suggests that N-RAS may be of potential clinical value as prognostic biomarker of progressive fibrotic liver damage, or as a novel therapeutic target for the treatment of chronic liver disease

    A natural anti-T-cell receptor monoclonal antibody protects against experimental autoimmune encephalomyelitis

    Get PDF
    AbstractThe therapeutic potential of natural anti-T-cell receptor (TCR) antibodies is largely unknown. We investigated whether passive administration of C1-19, a novel natural anti-TCRVβ8 monoclonal antibody, could interfere with the development of EAE. Treatment with C1-19 prevented myelin basic protein (MBP)-induced EAE in Vβ8-sufficient B10.PL but not in Vβ8-deficient SJL mice. Furthermore, C1-19 reduced disease severity when administrated shortly after disease onset. These protective effects of C1-19 correlated with a Th2 bias of the cytokine response, in the absence of T-cell deletion or anergy. Together, these findings indicate that natural anti-TCR antibodies could function as therapeutic tools in autoimmune inflammatory diseases

    Cancer Abolishes the Tissue Type-Specific Differences in the Phenotype of Energetic Metabolism1

    Get PDF
    Nowadays, cellular bioenergetics has become a central issue of investigation in cancer biology. Recently, the metabolic activity of the cancer cell has been shown to correlate with a proteomic index that informs of the relative mitochondrial activity of the cell. Within this new field of investigation, we report herein the production and characterization of high-affinity monoclonal antibodies against proteins of the “bioenergetic signature” of the cell. The use of recombinant proteins and antibodies against the mitochondrial β-F1-ATPase and Hsp60 proteins and the enzymes of the glycolytic pathway glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase M2 in quantitative assays provide, for the first time, the actual amount of these proteins in normal and tumor surgical specimens of breast, lung, and esophagus. The application of this methodology affords a straightforward proteomic signature that quantifies the variable energetic demand of human tissues. Furthermore, the results show an unanticipated finding: tumors from different tissues and/or histological types have the same proteomic signature of energetic metabolism. Therefore, the results indicate that cancer abolishes the tissue-specific differences in the bioenergetic phenotype of mitochondria. Overall, the results support that energetic metabolism represents an additional hallmark of the phenotype of the cancer cell and a promising target for the treatment of diverse neoplasias

    Different composition of the human and the mouse γδ T cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies

    Get PDF
    The γδ T cell receptor for antigen (TCR) comprises the clonotypic TCRγδ, the CD3 (CD3γε and/or CD3δε), and the ζζ dimers. γδ T cells do not develop in CD3γ-deficient mice, whereas human patients lacking CD3γ have abundant peripheral blood γδ T cells expressing high γδ TCR levels. In an attempt to identify the molecular basis for these discordant phenotypes, we determined the stoichiometries of mouse and human γδ TCRs using blue native polyacrylamide gel electrophoresis and anti-TCR–specific antibodies. The γδ TCR isolated in digitonin from primary and cultured human γδ T cells includes CD3δ, with a TCRγδCD3ε(2)δγζ(2) stoichiometry. In CD3γ-deficient patients, this may allow substitution of CD3γ by the CD3δ chain and thereby support γδ T cell development. In contrast, the mouse γδ TCR does not incorporate CD3δ and has a TCRγδCD3ε(2)γ(2)ζ(2) stoichiometry. CD3γ-deficient mice exhibit a block in γδ T cell development. A human, but not a mouse, CD3δ transgene rescues γδ T cell development in mice lacking both mouse CD3δ and CD3γ chains. This suggests important structural and/or functional differences between human and mouse CD3δ chains during γδ T cell development. Collectively, our results indicate that the different γδ T cell phenotypes between CD3γ-deficient humans and mice can be explained by differences in their γδ TCR composition

    Human congenital T-cell receptor disorders

    No full text
    Immunodeficiencies of most T-cell receptor (TCR) components (TCRID) have been reported in almost 40 patients worldwide who have also, at times, shown signs of autoimmunity. We updated their clinical, immunological, and molecular features with an emphasis on practical diagnosis, as the range of the disorder grows in complexity with new partial defects. Cellular and animal models are also reviewed and in some cases reveal their limitations for predicting TCRID immunopathology

    CD3G or CD3D Knockdown in Mature, but Not Immature, T Lymphocytes Similarly Cripples the Human TCRαβ Complex

    Get PDF
    The human αβ T-cell receptor (TCR) is composed of a variable heterodimer (TCRαβ) and three invariant dimers (CD3γε, CD3δε, and ζζ/CD2472). The role of each invariant chain in the stepwise interactions among TCR chains along the assembly is still not fully understood. Despite the high sequence homology between CD3γ and CD3δ, the clinical consequences of the corresponding immunodeficiencies (ID) in humans are very different (mild and severe, respectively), and mouse models do not recapitulate findings in human ID. To try to understand such disparities, we stably knocked down (KD) CD3D or CD3G expression in the human Jurkat T-cell line and analyzed comparatively their impact on TCRαβ assembly, transport, and surface expression. The results indicated that TCR ensembles were less stable and CD3ε levels were lower when CD3γ, rather than CD3δ, was scarce. However, both defective TCR ensembles were strongly retained in the ER, lacked ζζ/CD2472, and barely reached the T-cell surface (30% vs. normal controls). CD3 KD of human T-cell progenitors followed by mouse fetal thymus organ cultures showed high plasticity in emerging immature polyclonal T lymphocytes that allowed for the expression of significant TCR levels which may then signal for survival in CD3γ, but not in CD3δ deficiency, and explain the immunological and clinical disparities of such ID cases

    Human CD3γ, but not CD3δ, haploinsufficiency differentially impairs γδ versus αβ surface TCR expression

    No full text
    Abstract Background The T cell antigen receptors (TCR) of αβ and γδ T lymphocytes are believed to assemble in a similar fashion in humans. Firstly, αβ or γδ TCR chains incorporate a CD3δε dimer, then a CD3γε dimer and finally a ζζ homodimer, resulting in TCR complexes with the same CD3 dimer stoichiometry. Partial reduction in the expression of the highly homologous CD3γ and CD3δ proteins would thus be expected to have a similar impact in the assembly and surface expression of both TCR isotypes. To test this hypothesis, we compared the surface TCR expression of primary αβ and γδ T cells from healthy donors carrying a single null or leaky mutation in CD3G (γ+/−) or CD3D (δ+/−, δ+/leaky) with that of normal controls. Results Although the partial reduction in the intracellular availability of CD3γ or CD3δ proteins was comparable as a consequence of the mutations, surface TCR expression measured with anti-CD3ε antibodies was significantly more decreased in γδ than in αβ T lymphocytes in CD3γ+/− individuals, whereas CD3δ+/− and CD3δ+/leaky donors showed a similar decrease of surface TCR in both T cell lineages. Therefore, surface γδ TCR expression was more dependent on available CD3γ than surface αβ TCR expression. Conclusions The results support the existence of differential structural constraints in the two human TCR isotypes regarding the incorporation of CD3γε and CD3δε dimers, as revealed by their discordant surface expression behaviour when confronted with reduced amounts of CD3γ, but not of the homologous CD3δ chain. A modified version of the prevailing TCR assembly model is proposed to accommodate these new data

    Running title: Novel loss of function KCNA5 variants in PAH

    Get PDF
    Reduced expression and/or activity of Kv1.5 channels (encoded by KCNA5) is a common hallmark in human or experimental pulmonary arterial hypertension (PAH). Likewise, genetic variants in KCNA5 have been found in PAH patients, but their functional consequences and potential impact on the disease are largely unknown. Herein, we aimed to characterize the functional consequences of 7 KCNA5 variants found in a cohort of PAH patients. Potassium currents were recorded by patch-clamp technique in HEK293 cells transfected with WT or mutant Kv1.5 cDNA. Flow cytometry, western blot and confocal microscopy techniques were used for measuring protein expression and cell apoptosis in HEK293 and human pulmonary artery smooth muscle cells (hPASMC). KCNA5 variants found in PAH patients (namely, p.Arg184Pro and p.Gly384Arg) resulted in a clear loss of potassium channel function as assessed by electrophysiological and molecular modelling analyses. The p.Arg184Pro variant also resulted in a pronounced reduction of Kv1.5 expression. Transfection with p.Arg184Pro or p.Gly384Arg variants decreased apoptosis of hPASMCs compared with the WT, demonstrating that KCNA5 dysfunction in both variants affects cell viability. Thus, in addition to affecting channel activity, both variants were associated with impaired apoptosis, a crucial process linked to the disease. The estimated prevalence of dysfunctional KCNA5 variants in the PAH population analyzed was around 1 %. Our data indicate that some KCNA5 variants found PAH patients have critical consequences for channel function supporting the idea that KCNA5 pathogenic variants may be a causative or contributing factor for PAH.This work was supported by Fundación Contra la Hipertensión Pulmonar (FCHP); Ministerio de Ciencia e Innovación [PID2020-117939RB-I00 to AC, PID2019-104366RB-C21 to TG, PID2019-107363RB-I00 to FPV]; Comunidad de Madrid [B2017/BMD-3727 to AC] and Instituto de Salud Carlos III [PI18/01233, PI21/01593] with funds from the European Union (Fondo Europeo de Desarrollo Regional FEDER); and by an annual grant by the FEDER foundation (Federación Española de Enfermedades Raras).Peer reviewe
    corecore