902 research outputs found

    Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays

    Get PDF
    First Order Reversal Curve (FORC) analysis has been established as an appropriate method to investigate the magnetic interactions among complex ferromagnetic nanostructures. In this work, the magnetization reversal mechanism of bi-segmented nanowires composed by long Co and Ni segments contacted at one side was investigated, as a model system to identify and understand the FORC fingerprint of a two-step magnetization reversal process. The resulting hysteresis loop of the bi-segmented nanowire array exhibits a completely different magnetic behavior than the one expected for the magnetization reversal process corresponding to each respective Co and Ni nanowire arrays, individually. Based on the FORC analysis, two possible magnetization reversal processes can be distinguished as a consequence of the ferromagnetic coupling at the interface between the Ni and Co segments. Depending on the relative difference between the magnetization switching fields of each segment, the softer magnetic phase induces the switching of the harder one through the injection and propagation of a magnetic domain wall when both switching fields are comparable. On the other hand, if the switching fields values differ enough, the antiparallel magnetic configuration of nanowires is also possible but energetically unfavorable, thus resulting in an unstable magnetic configuration. Making use of the different temperature dependence of the magnetic properties for each nanowire segment with different composition, one of the two types of magnetization reversal is favored, as demonstrated by FORC analyses

    The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05

    Get PDF
    Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0

    Specification and Development of a HMI for ADAS, Based in Usability and Accessibility Principles

    Get PDF
    Traditionally, the design of road vehicle HMI is based in esthetic principles, maintaining it as an attractive factor for possible clients when buying a car. Only recently, ergonomic benefits have been applied to the design of HMIs, mainly following institutional impulses like the European Union one, but whose contribution is not clearly stated nowadays in commercial products. In this paper the authors present a study of the design of an HMI, based in usability and accessibility premises, centering the design in the user, as method to improve safety, making natural the communication with the driver as well as being able to transmitting information to the driver, from basic to the generated by ADAS installed in the car. Following these specifications a set of prototypes have been designed in order to develop a testbed that could be evaluated for a large set of drivers.This work has been supported by the Spanish Ministry of Science and Innovation (TRA2007-67786 and TRA2009-07505) and the CAM project SEGVAUTO-II.Publicad

    Negative time delay for wave reflection from a one-dimensional semi-harmonic well

    Full text link
    It is reported that the phase time of particles which are reflected by a one-dimensional semi-harmonic well includes a time delay term which is negative for definite intervals of the incoming energy. In this interval, the absolute value of the negative time delay becomes larger as the incident energy becomes smaller. The model is a rectangular well with zero potential energy at its right and a harmonic-like interaction at its left.Comment: 6 pages, 5 eps figures. Talk presented at the XXX Workshop on Geometric Methods in Physics, Bialowieza, Poland, 201

    Thermal impact from a thermoelectric power plant on a tropical coastal lagoon

    Get PDF
    Tropical coastal areas are sensitive ecosystems to climate change, mainly due to sea level rise and increasing water temperatures. Furthermore, they may be subject to numerous stresses, including heat releases from energy production. The Urias coastal lagoon (SE Gulf of California), a subtropical tidal estuary, receives cooling water releases from a thermoelectric power plant, urban and industrial wastes, and shrimp farm discharges. In order to evaluate the plant thermal impact, we measured synchronous temperature time series close to and far from the plant. Furthermore, in order to discriminate the thermal pollution impact from natural variability, we used a high-resolution hydrodynamic model forced by, amongst others, cooling water release as a continuous flow (7.78 m3 s?1) at 6 °C overheating temperature. Model results and field data indicated that the main thermal impact was temporally restricted to the warmest months, spatially restricted to the surface layers (above 0.6 m) and distributed along the shoreline within ?100 m of the release point. The methodology and results of this study can be extrapolated to tropical coastal lagoons that receive heat discharges.<br/

    Chains of infinite order, chains with memory of variable length, and maps of the interval

    Full text link
    We show how to construct a topological Markov map of the interval whose invariant probability measure is the stationary law of a given stochastic chain of infinite order. In particular we caracterize the maps corresponding to stochastic chains with memory of variable length. The problem treated here is the converse of the classical construction of the Gibbs formalism for Markov expanding maps of the interval

    Block copolymer based novel magnetic mixed matrix membranes-magnetic modulation of water permeation by irreversible structural changes

    Get PDF
    This contribution focuses on understanding the effect of magnetic field intensity on the performance of novel hydrophilic and hydrophobic mixed matrix membranes (MMMs). The hydrophilic MMMs were made up of polymeric nanoparticles (PNPs) that were synthesized through polymerization-induced self-assembly (PISA) and iron oxide nanoparticles prepared in presence of poly (methacrylic acid)-b-poly quaternized (2-dimethylamino)ethyl methacrylate. The hydrophobic MMMs were prepared by the addition of iron oxide nanoparticles with different surface properties to a linear poly (methacrylic acid)-b-poly (methylmethacrylate) diblock copolymer dissolved in tetrahydrofuran (THF). Three different types of hydrophilic membranes were prepared with polymeric nanoparticles of different morphologies (spherical, vermicular and vesicular). In case of the hydrophobic membranes, six different membranes containing different iron oxide core coated with different stabilizers such as poly (methacrylic acid), quaternized poly(2-dimethylamino)ethyl methacrylate and meso-2, 3-dimercaptosuccinic acid were prepared. An external magnetic field with intensity values up to 1.15 T was used for the permeation studies and the results were compared with those obtained in the absence of magnetic field. The collected data indicate an increase in the water flux of up to 16% and 29% under the magnetic field for hydrophobic and hydrophilic membranes, respectively. The STEM analyses suggest that the magnetic nanoparticles move within the membrane structure during the application of the magnetic field. This displacement/rearrangement causes constant changes in the membrane structure (structure of the active layer) and consequently on the membrane permeability. These results suggest that the application of the magnetic field could be used as a pretreatment step to obtain high flux membranes
    corecore