31 research outputs found

    Reduction of motion effects in myocardial arterial spin labeling

    Get PDF
    Purpose To evaluate the accuracy and reproducibility of myocardial blood flow measurements obtained under different breathing strategies and motion correction techniques with arterial spin labeling. Methods A prospective cardiac arterial spin labeling study was performed in 12 volunteers at 3 Tesla. Perfusion images were acquired twice under breath-hold, synchronized-breathing, and free-breathing. Motion detection based on the temporal intensity variation of a myocardial voxel, as well as image registration based on pairwise and groupwise approaches, were applied and evaluated in synthetic and in vivo data. A region of interest was drawn over the mean perfusion-weighted image for quantification. Original breath-hold datasets, analyzed with individual regions of interest for each perfusion-weighted image, were considered as reference values. Results Perfusion measurements in the reference breath-hold datasets were in line with those reported in literature. In original datasets, prior to motion correction, myocardial blood flow quantification was significantly overestimated due to contamination of the myocardial perfusion with the high intensity signal of blood pool. These effects were minimized with motion detection or registration. Synthetic data showed that accuracy of the perfusion measurements was higher with the use of registration, in particular after the pairwise approach, which probed to be more robust to motion. Conclusion Satisfactory results were obtained for the free-breathing strategy after pairwise registration, with higher accuracy and robustness (in synthetic datasets) and higher intrasession reproducibility together with lower myocardial blood flow variability across subjects (in in vivo datasets). Breath-hold and synchronized-breathing after motion correction provided similar results, but these breathing strategies can be difficult to perform by patients

    Systematic method for morphological reconstruction of the semicircular canals using a fully automatic skeletonization process

    Get PDF
    We present a novel method to characterize the morphology of semicircular canals of the inner ear. Previous experimental works have a common nexus, the human-operator subjectivity. Although these methods are mostly automatic, they rely on a human decision to determine some particular anatomical positions. We implement a systematic analysis where there is no human subjectivity. Our approach is based on a specific magnetic resonance study done in a group of 20 volunteers. From the raw data, the proposed method defines the centerline of all three semicircular canals through a skeletonization process and computes the angle of the functional pair and other geometrical parameters. This approach allows us to assess the inter-operator effect on other methods. From our results, we conclude that, although an average geometry can be defined, the inner ear anatomy cannot be reduced to a single geometry as seen in previous experimental works. We observed a relevant variability of the geometrical parameters in our cohort of volunteers that hinders this usual simplification

    The neural substrate and functional integration of uncertainty in decision making: an information theory approach

    Get PDF
    Decision making can be regarded as the outcome of cognitive processes leading to the selection of a course of action among several alternatives. Borrowing a central measurement from information theory, Shannon entropy, we quantified the uncertainties produced by decisions of participants within an economic decision task under different configurations of reward probability and time. These descriptors were used to obtain blood oxygen level-dependent (BOLD) signal correlates of uncertainty and two clusters codifying the Shannon entropy of task configurations were identified: a large cluster including parts of the right middle cingulate cortex (MCC) and left and right pre-supplementary motor areas (pre-SMA) and a small cluster at the left anterior thalamus. Subsequent functional connectivity analyses using the psycho-physiological interactions model identified areas involved in the functional integration of uncertainty. Results indicate that clusters mostly located at frontal and temporal cortices experienced an increased connectivity with the right MCC and left and right pre-SMA as the uncertainty was higher. Furthermore, pre-SMA was also functionally connected to a rich set of areas, most of them associative areas located at occipital and parietal lobes. This study provides a map of the human brain segregation and integration (i.e., neural substrate and functional connectivity respectively) of the uncertainty associated to an economic decision making paradigm

    Successful working memory processes and cerebellum in an elderly sample: A neuropsychological and fMRI study

    Get PDF
    Background Imaging studies help to understand the evolution of key cognitive processes related to aging, such as working memory (WM). This study aimed to test three hypotheses in older adults. First, that the brain activation pattern associated to WM processes in elderly during successful low load tasks is located in posterior sensory and associative areas; second, that the prefrontal and parietal cortex and basal ganglia should be more active during high-demand tasks; third, that cerebellar activations are related to high-demand cognitive tasks and have a specific lateralization depending on the condition. Methods We used a neuropsychological assessment with functional magnetic resonance imaging and a core N-back paradigm design that was maintained across the combination of four conditions of stimuli and two memory loads in a sample of twenty elderly subjects. Results During low-loads, activations were located in the visual ventral network. In high loads, there was an involvement of the basal ganglia and cerebellum in addition to the frontal and parietal cortices. Moreover, we detected an executive control role of the cerebellum in a relatively symmetric fronto-parietal network. Nevertheless, this network showed a predominantly left lateralization in parietal regions associated presumably with an overuse of verbal storage strategies. The differential activations between conditions were stimuli-dependent and were located in sensory areas. Conclusion Successful WM processes in the elderly population are accompanied by an activation pattern that involves cerebellar regions working together with a fronto-parietal network

    Multiparametric renal magnetic resonance imaging: A reproducibility study in renal allografts with stable function

    Get PDF
    Monitoring renal allograft function after transplantation is key for the early detection of allograft impairment, which in turn can contribute to preventing the loss of the allograft. Multiparametric renal MRI (mpMRI) is a promising noninvasive technique to assess and characterize renal physiopathology; however, few studies have employed mpMRI in renal allografts with stable function (maintained function over a long time period). The purposes of the current study were to evaluate the reproducibility of mpMRI in transplant patients and to characterize normal values of the measured parameters, and to estimate the labeling efficiency of Pseudo-Continuous Arterial Spin Labeling (PCASL) in the infrarenal aorta using numerical simulations considering experimental measurements of aortic blood flow profiles. The subjects were 20 transplant patients with stable kidney function, maintained over 1 year. The MRI protocol consisted of PCASL, intravoxel incoherent motion, and T1 inversion recovery. Phase contrast was used to measure aortic blood flow. Renal blood flow (RBF), diffusion coefficient (D), pseudo-diffusion coefficient (D*), flowing fraction ( f ), and T1 maps were calculated and mean values were measured in the cortex and medulla. The labeling efficiency of PCASL was estimated from simulation of Bloch equations. Reproducibility was assessed with the within-subject coefficient of variation, intraclass correlation coefficient, and Bland-Altman analysis. Correlations were evaluated using the Pearson correlation coefficient. The significance level was p less than 0.05. Cortical reproducibility was very good for T1, D, and RBF, moderate for f , and low for D*, while medullary reproducibility was good for T1 and D. Significant correlations in the cortex between RBF and f (r = 0.66), RBF and eGFR (r = 0.64), and D* and eGFR (r = -0.57) were found. Normal values of the measured parameters employing the mpMRI protocol in kidney transplant patients with stable function were characterized and the results showed good reproducibility of the techniques

    Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA

    Get PDF
    Purpose The potential of renal MRI biomarkers has been increasingly recognised, but clinical translation requires more standardisation. The PARENCHIMA consensus project aims to develop and apply a process for generating technical recommendations on renal MRI. Methods A task force was formed in July 2018 focused on fve methods. A draft process for attaining consensus was distributed publicly for consultation and fnalised at an open meeting (Prague, October 2018). Four expert panels completed surveys between October 2018 and March 2019, discussed results and refned the surveys at a face-to-face meeting (Aarhus, March 2019) and completed a second round (May 2019). Results A seven-stage process was defned: (1) formation of expert panels; (2) defnition of the context of use; (3) literature review; (4) collection and comparison of MRI protocols; (5) consensus generation by an approximate Delphi method; (6) reporting of results in vendor-neutral and vendor-specifc terms; (7) ongoing review and updating. Application of the process resulted in 166 consensus statements. Conclusion The process generated meaningful technical recommendations across very diferent MRI methods, while allowing for improvement and refnement as open issues are resolved. The results are likely to be widely supported by the renal MRI community and thereby promote more harmonisation

    Consensus‐based technical recommendations for clinical translation of renal phase contrast MRI

    Get PDF
    Background Phase‐contrast (PC) MRI is a feasible and valid noninvasive technique to measure renal artery blood flow, showing potential to support diagnosis and monitoring of renal diseases. However, the variability in measured renal blood flow values across studies is large, most likely due to differences in PC‐MRI acquisition and processing. Standardized acquisition and processing protocols are therefore needed to minimize this variability and maximize the potential of renal PC‐MRI as a clinically useful tool. Purpose To build technical recommendations for the acquisition, processing, and analysis of renal 2D PC‐MRI data in human subjects to promote standardization of renal blood flow measurements and facilitate the comparability of results across scanners and in multicenter clinical studies. Study Type Systematic consensus process using a modified Delphi method. Population Not applicable. Sequence Field/Strength Renal fast gradient echo‐based 2D PC‐MRI. Assessment An international panel of 27 experts from Europe, the USA, Australia, and Japan with 6 (interquartile range 4–10) years of experience in 2D PC‐MRI formulated consensus statements on renal 2D PC‐MRI in two rounds of surveys. Starting from a recently published systematic review article, literature‐based and data‐driven statements regarding patient preparation, hardware, acquisition protocol, analysis steps, and data reporting were formulated. Statistical Tests Consensus was defined as ≥75% unanimity in response, and a clear preference was defined as 60–74% agreement among the experts. Results Among 60 statements, 57 (95%) achieved consensus after the second‐round survey, while the remaining three showed a clear preference. Consensus statements resulted in specific recommendations for subject preparation, 2D renal PC‐MRI data acquisition, processing, and reporting. Data Conclusion These recommendations might promote a widespread adoption of renal PC‐MRI, and may help foster the set‐up of multicenter studies aimed at defining reference values and building larger and more definitive evidence, and will facilitate clinical translation of PC‐MRI. Level of Evidence 1 Technical Efficacy Stage

    RICORS2040 : The need for collaborative research in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is a silent and poorly known killer. The current concept of CKD is relatively young and uptake by the public, physicians and health authorities is not widespread. Physicians still confuse CKD with chronic kidney insufficiency or failure. For the wider public and health authorities, CKD evokes kidney replacement therapy (KRT). In Spain, the prevalence of KRT is 0.13%. Thus health authorities may consider CKD a non-issue: very few persons eventually need KRT and, for those in whom kidneys fail, the problem is 'solved' by dialysis or kidney transplantation. However, KRT is the tip of the iceberg in the burden of CKD. The main burden of CKD is accelerated ageing and premature death. The cut-off points for kidney function and kidney damage indexes that define CKD also mark an increased risk for all-cause premature death. CKD is the most prevalent risk factor for lethal coronavirus disease 2019 (COVID-19) and the factor that most increases the risk of death in COVID-19, after old age. Men and women undergoing KRT still have an annual mortality that is 10- to 100-fold higher than similar-age peers, and life expectancy is shortened by ~40 years for young persons on dialysis and by 15 years for young persons with a functioning kidney graft. CKD is expected to become the fifth greatest global cause of death by 2040 and the second greatest cause of death in Spain before the end of the century, a time when one in four Spaniards will have CKD. However, by 2022, CKD will become the only top-15 global predicted cause of death that is not supported by a dedicated well-funded Centres for Biomedical Research (CIBER) network structure in Spain. Realizing the underestimation of the CKD burden of disease by health authorities, the Decade of the Kidney initiative for 2020-2030 was launched by the American Association of Kidney Patients and the European Kidney Health Alliance. Leading Spanish kidney researchers grouped in the kidney collaborative research network Red de Investigación Renal have now applied for the Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) call for collaborative research in Spain with the support of the Spanish Society of Nephrology, Federación Nacional de Asociaciones para la Lucha Contra las Enfermedades del Riñón and ONT: RICORS2040 aims to prevent the dire predictions for the global 2040 burden of CKD from becoming true

    Técnica de imágenes de transferencia de protones de amida (APT) en la evaluación de tumores cerebrales en resonancia magnética de 3 Tesla.

    No full text
    El presente estudio muestra un análisis detallado de la prometedora secuencia de resonancia magnética, APT-CEST. Esta nueva WIP busca revelar información de interés sobre las lesiones tumorales, como puede ser, el comportamiento de la región patológica. Sin embargo, es importante explorar su potencial más allá́ de la patología tumoral, abriendo paso a investigaciones dirigidas a otras condiciones de salud. En este caso, se ha probado la nueva secuencia APT-CEST en pacientes no-tumorales para obtener información relevante sobre el comportamiento de los tejidos en condiciones “sanas”, de tal manera que, estos datos, puedan ser de gran ayuda para la posterior comparación de los valores obtenidos en pacientes tumorales. En concreto, se han estudiado las regiones de la sustancia blanca y sustancia gris profunda. En la segunda mitad del estudio, se ha llevado a cabo el estudio de pacientes con patología oncológica. Específicamente, se han investigado regiones clave como el tumor sólido, la sustancia blanca edematosa, la sustancia blanca de apariencia normal y la cavidad quirúrgica. Para ello, se han procesado las imágenes mediante el software Syngo Via y se han realizado diferentes ROI en las regiones mencionadas anteriormente. Con toda la información recopilada, se han realizado pruebas estadísticas en Rstudio. Los resultados obtenidos revelan un aumento del valor de APT en las regiones de tumor sólido, necrosis y cavidad quirúrgica. La SBAN de los pacientes tumorales presentan valores similares a la sustancia blanca sana. Además, en los pacientes sanos se visualiza un “gradiente” fronto-occipital del APT. La sustancia gris profunda presenta valores más elevados que la sustancia blanca, siendo estos muy inferiores a los del tumor sólido, necrosis o cavidad quirúrgic
    corecore