403 research outputs found

    Public and private sector wages interactions in a general equilibrium model

    Get PDF
    This paper develops a dynamic general equilibrium model in which the public and the private sector interact in the labor market. Previous studies that analyze the labor market effects of public sector employment and wages have mostly assumed exogenous rules for public wage and public employment. We show that theories that equalize wages with marginal products in the private sector can rationalize the interaction of public and private sector wages when extended to accommodate a non-trivial government sector/public sector union that endogenously determines public employment and wages. Our model suggests a positive correlation between public and private sector wages. Any increase in tax revenues, coupled with the existence of a positive public-private sector wage gap, makes working in the public sector an attractive option. Thus, a positive neutral productivity shock increases public and private sector wages. More interestingly, even a private-sector specific productivity shock spills-over to the public sector, increasing public wages. These facts lend some support to the wage leading role of the private sector. Nevertheless, at the same time, a positive shock to public sector wages would lead to an increase in private sector wages, via the flow of workers from the private to the public sector. JEL Classification: C32, J30, J51, J52, E62, E63, H50Labor market, public employment, public wages, Trade Unions

    Improving degradation of emerging organic compounds by applying chaotic advection in Managed Aquifer Recharge in randomly heterogeneous porous media

    Get PDF
    Improving degradation rates of emerging organic compounds (EOCs) in groundwater is still a challenge. Although their degradation is not fully understood, it has been observed that some substances are preferably degraded under specific redox conditions. The coupling of Managed Aquifer Recharge with soil aquifer remediation treatment, by placing a reactive layer containing organic matter at the bottom of the infiltration pond, is a promising technology to improve the rate of degradation of EOCs. Its success is based on assuming that recharged water and groundwater get well mixed, which is not always true. It has been demonstrated that mixing can be enhanced by inducing chaotic advection through extraction-injection-engineering. In this work, we analyze how chaotic advection might enhance the spreading of redox conditions with the final aim of improving degradation of a mix of benzotriazoles: benzotriazole, 5-methyl-benzotriazole, and 5-chloro-benzotriazole. The degradation of the first two compounds was fastest under aerobic conditions whereas the third compound was best degraded under denitrification conditions. We developed a reactive transport model that describes how a recharged water rich in organic matter mixes with groundwater, how this organic matter is oxidized by different electron acceptors, and how the benzotriazoles are degraded attending for the redox state. The model was tested in different scenarios of recharge, both in homogenous and in heterogenous media. It was found that chaotic flow increases the spreading of the plume of recharged water. Consequently, different redox conditions coexist at a given time, facilitating the degradation of EOCs

    The Non-Canonical Wnt/PKC Pathway Regulates Mitochondrial Dynamics through Degradation of the Arm-Like Domain-Containing Protein Alex3

    Get PDF
    The regulation of mitochondrial dynamics is vital in complex cell types, such as neurons, that transport and localize mitochondria in high energy-demanding cell domains. The Armcx3 gene encodes a mitochondrial-targeted protein (Alex3) that contains several arm-like domains. In a previous study we showed that Alex3 protein regulates mitochondrial aggregation and trafficking. Here we studied the contribution of Wnt proteins to the mitochondrial aggregation and dynamics regulated by Alex3. Overexpression of Alex3 in HEK293 cells caused a marked aggregation of mitochondria, which was attenuated by treatment with several Wnts. We also found that this decrease was caused by Alex3 degradation induced by Wnts. While the Wnt canonical pathway did not alter the pattern of mitochondrial aggregation induced by Alex3, we observed that the Wnt/PKC non-canonical pathway regulated both mitochondrial aggregation and Alex3 protein levels, thereby rendering a mitochondrial phenotype and distribution similar to control patterns. Our data suggest that the Wnt pathway regulates mitochondrial distribution and dynamics through Alex3 protein degradation

    An integrated analysis of genes and functional pathways for aggression in human and rodent models

    Get PDF
    Human genome-wide association studies (GWAS), transcriptome analyses of animal models, and candidate gene studies have advanced our understanding of the genetic architecture of aggressive behaviors. However, each of these methods presents unique limitations. To generate a more confident and comprehensive view of the complex genetics underlying aggression, we undertook an integrated, cross-species approach. We focused on human and rodent models to derive eight gene lists from three main categories of genetic evidence: two sets of genes identified in GWAS studies, four sets implicated by transcriptome-wide studies of rodent models, and two sets of genes with causal evidence from online Mendelian inheritance in man (OMIM) and knockout (KO) mice reports. These gene sets were evaluated for overlap and pathway enrichment to extract their similarities and differences. We identified enriched common pathways such as the G-protein coupled receptor (GPCR) signaling pathway, axon guidance, reelin signaling in neurons, and ERK/MAPK signaling. Also, individual genes were ranked based on their cumulative weights to quantify their importance as risk factors for aggressive behavior, which resulted in 40 top-ranked and highly interconnected genes. The results of our cross-species and integrated approach provide insights into the genetic etiology of aggression

    Adhesion of freshwater sponge cells mediated by carbohydrate-carbohydrate interactions requires low environmental calcium

    Get PDF
    Marine ancestors of freshwater sponges had to undergo a series of physiological adaptations to colonize harsh and heterogeneous limnic environments. Besides reduced salinity, river-lake systems also have calcium concentrations far lower than seawater. Cell adhesion in sponges is mediated by calcium-dependent multivalent self-interactions of sulfated polysaccharides components of membrane-bound proteoglycans named aggregation factors. Cells of marine sponges require seawater average calcium concentration (10\xC2\xA0mM) to sustain adhesion promoted by aggregation factors. We demonstrate here that the freshwater sponge Spongilla alba can thrive in a calcium-poor aquatic environment and that their cells are able to aggregate and form primmorphs with calcium concentrations 40-fold lower than that required by marine sponges cells. We also find that their gemmules need calcium and other micronutrients to hatch and generate new sponges. The sulfated polysaccharide purified from S. alba has sulfate content and molecular size notably lower than those from marine sponges. Nuclear magnetic resonance analyses indicated that it is composed of a central backbone of non- and 2-sulfated \xCE\xB1- and \xCE\xB2-glucose units decorated with branches of \xCE\xB1-glucose. Assessments with atomic force microscopy/single-molecule force spectroscopy show that S. alba glucan requires 10-fold less calcium than sulfated polysaccharides from marine sponges to self-interact efficiently. Such an ability to retain multi-cellular morphology with low environmental calcium must have been a crucial evolutionary step for freshwater sponges to successfully colonize inland waters

    Geology of the Falcón Basin (NW Venezuela)

    Get PDF
    This paper presents a geological map and cross-section of the Falcón Basin based both on published and unpublished work and on new data collected in the northern and southern basin margins. The geological map covers an area of 4600 km2 at 1:100,000 scale. The cross- section is oriented NNW-SSE, traversing perpendicular to the main structures. In general, the structure of the study area results from the inversion of a graben (Oligocene-early Miocene back-arc basin), that started in the middle Miocene due to the convergence between the Caribbean and South American plates. The map, the cross-section and the observations made in the field have been used to generate a tectonostratigraphic reconstruction of the Falcón Basin. The Oligocene-early Miocene sedimentary succession mapped and described is relevant to the hydrocarbon exploration in the Caribbean and in the Gulf of Venezuela, where new hydrocarbon resources have recently been discovered (i.e. Perla gas field)

    Thin healthy women have a similar low bone mass to women with anorexia nervosa.

    Get PDF
    An association between anorexia nerviosa (AN) and low bone mass has been demonstrated. Bone loss associated with AN involves hormonal and nutritional impairments, though their exact contribution is not clearly established. We compared bone mass in AN patients with women of similar weight with no criteria for AN, and a third group of healthy, normal-weight, age-matched women. The study included forty-eight patients with AN, twenty-two healthy eumenorrhoeic women with low weight (LW group; BMI 18.5 kg/m2 (control group), all of similar age. We measured lean body mass, percentage fat mass, total bone mineral content (BMC) and bone mineral density in lumbar spine (BMD LS) and in total (tBMD). We measured anthropometric parameters, leptin and growth hormone. The control group had greater tBMD and BMD LS than the other groups, with no differences between the AN and LW groups. No differences were found in tBMD, BMD LS and total BMC between the restrictive (n 25) and binge-purge type (n 23) in AN patients. In AN, minimum weight (P = 0.002) and percentage fat mass (P = 0.02) explained BMD LS variation (r2 0.48) and minimum weight (r2 0.42; P = 0.002) for tBMD in stepwise regression analyses. In the LW group, BMI explained BMD LS (r2 0.72; P = 0.01) and tBMD (r2 0.57; P = 0.04). We concluded that patients with AN had similar BMD to healthy thin women. Anthropometric parameters could contribute more significantly than oestrogen deficiency in the achievement of peak bone mass in AN patients

    Octopamine Neuromodulation Regulates Gr32a-Linked Aggression and Courtship Pathways in \u3ci\u3eDrosophila\u3c/i\u3e Males

    Get PDF
    Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway
    corecore