135 research outputs found

    Dendritic Cell Interactions with NK Cells from Different Tissues

    Get PDF
    Introduction: In recent years, it has been realized that innate lymphocytes do not act in isolation but potentiate their efficiency by interacting with each other, resulting even in the regulation of adaptive immune response. One such cross-talk exists between dendritic cells (DCs) and natural killer (NK) cells. Here, we summarize recent studies on which subsets of these two innate immune components participate in this interaction, how it influences immune responses, and to which extent similar stimuli are integrated by DCs and NK cells during innate immunity. Conclusion: We suggest that this cross-talk should be harnessed by activating both of these innate leucocyte populations with new adjuvant formulations for immunotherapie

    Natural killer cell distribution and trafficking in human tissues

    Get PDF
    Few data are available regarding the recirculation of natural killer (NK) cells among human organs. Earlier studies have been often impaired by the use of markers then proved to be either not sufficiently specific for NK cells (e.g., CD57, CD56) or expressed only by subsets of NK cells (e.g., CD16). At the present, available data confirmed that human NK cells populate blood, lymphoid organs, lung, liver, uterus (during pregnancy), and gut. Several studies showed that NK cell homing appears to be subset-specific, as secondary lymphoid organs and probably several solid tissues are preferentially inhabited by CD56(bright)CD16(neg/dull) non-cytotoxic NK cells. Similar studies performed in the mouse model showed that lymph node and bone marrow are preferentially populated by CD11b(dull) NK cells while blood, spleen, and lung by CD27(dull) NK cells. Therefore, an important topic to be addressed in the human system is the contribution of factors that regulate NK cell tissue homing and egress, such as chemotactic receptors or homeostatic mechanisms. Here, we review the current knowledge on NK cell distribution in peripheral tissues and, based on recent acquisitions, we propose our view regarding the recirculation of NK cells in the human body

    Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells

    Get PDF
    During the innate response to many inflammatory and infectious stimuli, dendritic cells (DCs) undergo a differentiation process termed maturation. Mature DCs activate antigen-specific naive T cells. Here we show that both immature and mature DCs activate resting human natural killer (NK) cells. Within 1 wk the NK cells increase two- to fourfold in numbers, start secreting interferon (IFN)-γ, and acquire cytolytic activity against the classical NK target LCL721.221. The DC-activated NK cells then kill immature DCs efficiently, even though the latter express substantial levels of major histocompatibility complex (MHC) class I. Similar results are seen with interleukin (IL)-2-activated NK cell lines and clones, i.e., these NK cells kill and secrete IFN-γ in response to immature DCs. Mature DCs are protected from activated NK lysis, but lysis takes place if the NK inhibitory signal is blocked by a human histocompatibility leukocyte antigen (HLA)-A,B,C-specific antibody. The NK activating signal mainly involves the NKp30 natural cytotoxicity receptor, and not the NKp46 or NKp44 receptor. However, both immature and mature DCs seem to use a NKp30 independent mechanism to act as potent stimulators for resting NK cells. We suggest that DCs are able to control directly the expansion of NK cells and that the lysis of immature DCs can regulate the afferent limb of innate and adaptive immunity

    Principles of NK Cell/DC Crosstalk: The Importance of Cell Dialogue for a Protective Immune Response

    Get PDF
    A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been recently described. They help each other to acquire their complete functions, both in the periphery and

    Vitamin D and Inflammatory Bowel Disease

    Get PDF
    Vitamin D deficiency has been recognized as an environmental risk factor for Crohn’s disease since the early 80s. Initially, this finding was correlated with metabolic bone disease. Low serum 25-hydroxyvitamin D levels have been repeatedly reported in inflammatory bowel diseases together with a relationship between vitamin D status and disease activity. Subsequently, low serum vitamin D levels have been reported in various immune-related diseases pointing to an immunoregulatory role. Indeed, vitamin D and its receptor (VDR) are known to interact with different players of the immune homeostasis by controlling cell proliferation, antigen receptor signalling, and intestinal barrier function. Moreover, 1,25-dihydroxyvitamin D is implicated in NOD2-mediated expression of defensin-β2, the latter known to play a crucial role in the pathogenesis of Crohn’s disease (IBD1 gene), and several genetic variants of the vitamin D receptor have been identified as Crohn’s disease candidate susceptibility genes. From animal models we have learned that deletion of the VDR gene was associated with a more severe disease. There is a growing body of evidence concerning the therapeutic role of vitamin D/synthetic vitamin D receptor agonists in clinical and experimental models of inflammatory bowel disease far beyond the role of calcium homeostasis and bone metabolism

    Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics

    Get PDF
    A cooperative dialogue between natural killer (NK) cells and dendritic cells (DCs) has been elucidated in the last years. They help each other to acquire their complete functions, both in the periphery and in the secondary lymphoid organs. Thus, NK cells' activation by dendritic cells allows the killing of transformed or infected cells in the periphery but may also be important for the generation of adaptive immunity. Indeed, it has been shown that NK cells may play a key role in polarizing a Th1 response upon interaction with DCs exposed to microbial products. This regulatory role of DC/NK cross-talk is of particular importance at mucosal surfaces such as the intestine, where the immune system exists in intimate association with commensal bacteria such as lactic acid bacteria (LAB). We here review NK/DC interactions in the presence of gut-derived commensal bacteria and their role in bacterial strain-dependent immunomodulatory effects. We particularly aim to highlight the ability of distinct species of commensal bacterial probiotics to differently affect the outcome of DC/NK cross-talk and consequently to differently influence the polarization of the adaptive immune response

    Human Dendritic Cells Activate Resting Natural Killer (NK) Cells and Are Recognized via the NKp30 Receptor by Activated NK Cells

    Get PDF
    During the innate response to many inflammatory and infectious stimuli, dendritic cells (DCs) undergo a differentiation process termed maturation. Mature DCs activate antigen-specific naive T cells. Here we show that both immature and mature DCs activate resting human natural killer (NK) cells. Within 1 wk the NK cells increase two– to fourfold in numbers, start secreting interferon (IFN)-γ, and acquire cytolytic activity against the classical NK target LCL721.221. The DC-activated NK cells then kill immature DCs efficiently, even though the latter express substantial levels of major histocompatibility complex (MHC) class I. Similar results are seen with interleukin (IL)-2–activated NK cell lines and clones, i.e., these NK cells kill and secrete IFN-γ in response to immature DCs. Mature DCs are protected from activated NK lysis, but lysis takes place if the NK inhibitory signal is blocked by a human histocompatibility leukocyte antigen (HLA)-A,B,C–specific antibody. The NK activating signal mainly involves the NKp30 natural cytotoxicity receptor, and not the NKp46 or NKp44 receptor. However, both immature and mature DCs seem to use a NKp30 independent mechanism to act as potent stimulators for resting NK cells. We suggest that DCs are able to control directly the expansion of NK cells and that the lysis of immature DCs can regulate the afferent limb of innate and adaptive immunity

    Dendritic Cell Editing by Activated Natural Killer Cells Results in a More Protective Cancer-Specific Immune Response

    Get PDF
    Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c+ DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells

    Potential effects of vaccinations on the prevention of COVID-19: rationale, clinical evidence, risks, and public health considerations

    Get PDF
    IntroductionCoronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has quickly spread around the world. Areas coveredThis review will discuss the available immunologic and clinical evidence to support the benefit of the influenza, pneumococcal, and tuberculosis vaccines in the context of COVID-19 as well as to provide an overview on the COVID-19-specific vaccines that are in the development pipeline. In addition, implications for vaccination strategies from a public health perspective will be discussed. Expert opinionSome vaccines are being considered for their potentially beneficial role in preventing or improving the prognosis of COVID-19: influenza, pneumococcal and tuberculosis vaccines. These vaccines may have either direct effect on COVID-19 via different types of immune responses or indirect effects by reducing the burden of viral and bacterial respiratory diseases on individual patients and national healthcare system and by facilitating differential diagnoses with other viral/bacterial respiratory disease. On the other hand, a large number of candidate vaccines against SARS-CoV-2 are currently in the pipeline and undergoing phase I, II, and III clinical studies. As SARS-CoV-2 vaccines are expected to be marketed through accelerated regulatory pathways, vaccinovigilance as well as planning of a successful vaccination campaign will play a major role in protecting public health
    corecore