582 research outputs found

    Molecule-surface collision-induced dissociation of internally excited NO2 on MgO ( 100) *

    Get PDF
    - AbStl ¶lCt Collision-induced dissociation (CID) of highly excited NOs in the mixed 2A,/2B2 electronic system has been observed for well characterized MgO ( 100) surfaces with parent and product angular resolution at various internal energies. NO state distributions were probed by two-photon, two-frequency ionization, and its yield was found to track the NO2 absorption spectrum, confirming the CID mechanism. The angular dependence of the NO state distribution indicates that CID occurs following direct inelastic scattering rather than trapping-desorption

    Anterior ankle arthroscopy, distraction or dorsiflexion?

    Get PDF
    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7–1.5) and 0.7 cm (range 0.5–0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy

    365 nm photon-induced dynamics of CINO adsorbed on MgO(100)

    Get PDF
    Temperature programmed desorption (TPD) and 365 nm photolysis of ClNO adsorbed on MgO(100) at 90 K were investigated under ultrahigh vacuum conditions. The crystal was treated in a way that largely eliminated oxygen vacancies and yielded a relatively smooth surface. Angularly resolved time-of-flight (TOF) mass spectra and state-selective resonance-enhanced multiphoton ionization (REMPI) spectra of NO photoproducts were obtained. The TPD data indicate that ClNO desorbs at surface temperatures above 160 K for exposures (0) below 0.2 Langmuirs (L), while for higher values of 0 the main desorption peak is near 120 K. The higher temperature feature, which saturates at 0~0.3 L, is probably associated with binding to defect sites. Thermal desorption is believed to be molecular at all coverages. Irradiation at 365 nm for 0.1~0~5.0 L yields products having low average translational energies and broad translational energy distributions. NO fragment REMPI spectra were recorded at 0;;'0.7 L. The rotational distributions could be fit with a temperature of 110::1: 10 K, i.e., comparable to that of the substrate. These results differ from those obtained in the photodissociation of gas-phase CINO, where the NO fragment has high translational and rotational energies. However, the present results are similar to those obtained on rougher Mg0(100) surfaces. Possible mechanisms are discussed

    The distal fascicle of the anterior inferior tibiofibular ligament as a cause of tibiotalar impingement syndrome: a current concepts review

    Get PDF
    Impingement syndromes of the ankle involve either osseous or soft tissue impingement and can be anterior, anterolateral, or posterior. Ankle impingement syndromes are painful conditions caused by the friction of joint tissues, which are both the cause and the effect of altered joint biomechanics. The distal fascicle of the anterior inferior tibiofibular ligament (AITFL) is possible cause of anterior impingement. The objective of this article was to review the literature concerning the anatomy, pathogenesis, symptoms and treatment of the AITFL impingement and finally to formulate treatment recommendations. The AITFL starts from the distal tibia, 5 mm in average above the articular surface, and descends obliquely between the adjacent margins of the tibia and fibula, anterior to the syndesmosis to the anterior aspect of the lateral malleolus. The incidence of the accessory fascicle differs very widely in the several studies. The presence of the distal fascicle of the AITFL and also the contact with the anterolateral talus is probably a normal finding. It may become pathological, due to anatomical variations and/or anterolateral instability of the ankle resulting from an anterior talofibular ligament injury. When observed during an ankle arthroscopy, the surgeon should look for the criteria described to decide whether it is pathological and considering resection of the distal fascicle. The presence of the AITFL and the contact with the talus is a normal finding. An impingement of the AITFL can result from an anatomical variant or anteroposterior instability of the ankle. The diagnosis of ligamentous impingement in the anterior aspect of the ankle should be considered in patients who have chronic ankle pain in the anterolateral aspect of the ankle after an inversion injury and have a stable ankle, normal plain radiographs, and isolated point tenderness on the anterolateral aspect of the talar dome and in the anteroinferior tibiofibular ligament. The impingement syndrome can be treated arthroscopically

    Anterior impingement syndrome in dancers

    Get PDF
    Anterior impingement is a common problem in dancers occurring primarily secondary to the repetitive forced ankle dorsiflexion inherent in ballet. Symptoms generally occur progressively and may respond to conservative treatment including addressing biomechanical faults that contribute to the problem. As impingement progresses, movements essential to ballet may become impossible and arthroscopic ankle surgery is often effective for both diagnosis and treatment, allowing athletes to return to dance

    The course of the superficial peroneal nerve in relation to the ankle position: anatomical study with ankle arthroscopic implications

    Get PDF
    Despite the fact that the superficial peroneal nerve is the only nerve in the human body that can be made visible; iatrogenic damage to this nerve is the most frequently reported complication in anterior ankle arthroscopy. One of the methods to visualize the nerve is combined ankle plantar flexion and inversion. In the majority of cases, the superficial peroneal nerve can be made visible. The portals for anterior ankle arthroscopy are however created with the ankle in the neutral or slightly dorsiflexed position and not in combined plantar flexion and inversion. The purpose of this study was to undertake an anatomical study to the course of the superficial peroneal nerve in different positions of the foot and ankle. We hypothesize that the anatomical localization of the superficial peroneal nerve changes with different foot and ankle positions. In ten fresh frozen ankle specimens, a window, only affecting the skin, was made at the level of the anterolateral portal for anterior ankle arthroscopy in order to directly visualize the superficial peroneal nerve, or if divided, its terminal branches. Nerve movement was assessed from combined 10° plantar flexion and inversion to 5° dorsiflexion, standardized by the Telos stress device. Also for the 4th toe flexion, flexion of all the toes and for skin tensioning possible nerve movement was determined. The mean superficial peroneal nerve movement was 2.4 mm to the lateral side when the ankle was moved from 10° plantar flexion and inversion to the neutral ankle position and 3.6 mm to the lateral side from 10° plantar flexion and inversion to 5° dorsiflexion. Both displacements were significant (P < 0.01). The nerve consistently moves lateral when the ankle is manoeuvred from combined plantar flexion and inversion to the neutral or dorsiflexed position. If visible, it is therefore advised to create the anterolateral portal medial from the preoperative marking, in order to prevent iatrogenic damage to the superficial peroneal nerve

    Structural investigation of mechanically activated ZnO powder

    Get PDF
    Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation
    corecore