181 research outputs found
Random walks - a sequential approach
In this paper sequential monitoring schemes to detect nonparametric drifts
are studied for the random walk case. The procedure is based on a kernel
smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson
estimator and its as- sociated sequential partial sum process under
non-standard sampling. The asymptotic behavior differs substantially from the
stationary situation, if there is a unit root (random walk component). To
obtain meaningful asymptotic results we consider local nonpara- metric
alternatives for the drift component. It turns out that the rate of convergence
at which the drift vanishes determines whether the asymptotic properties of the
monitoring procedure are determined by a deterministic or random function.
Further, we provide a theoretical result about the optimal kernel for a given
alternative
oA novel nonparametric approach for estimating cut-offs in continuous risk indicators with application to diabetes epidemiology
<p>Abstract</p> <p>Background</p> <p>Epidemiological and clinical studies, often including anthropometric measures, have established obesity as a major risk factor for the development of type 2 diabetes. Appropriate cut-off values for anthropometric parameters are necessary for prediction or decision purposes. The cut-off corresponding to the Youden-Index is often applied in epidemiology and biomedical literature for dichotomizing a continuous risk indicator.</p> <p>Methods</p> <p>Using data from a representative large multistage longitudinal epidemiological study in a primary care setting in Germany, this paper explores a novel approach for estimating optimal cut-offs of anthropomorphic parameters for predicting type 2 diabetes based on a discontinuity of a regression function in a nonparametric regression framework.</p> <p>Results</p> <p>The resulting cut-off corresponded to values obtained by the Youden Index (maximum of the sum of sensitivity and specificity, minus one), often considered the optimal cut-off in epidemiological and biomedical research. The nonparametric regression based estimator was compared to results obtained by the established methods of the Receiver Operating Characteristic plot in various simulation scenarios and based on bias and root mean square error, yielded excellent finite sample properties.</p> <p>Conclusion</p> <p>It is thus recommended that this nonparametric regression approach be considered as valuable alternative when a continuous indicator has to be dichotomized at the Youden Index for prediction or decision purposes.</p
IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease
To through light on the mechanisms underlying the stimulation and persistence of glial cell activation in Parkinsonism, we investigate the function of IFN-γ and TNF-α in experimental models of Parkinson's disease and analyze their relation with local glial cell activation. It was found that IFN-γ and TNF-α remained higher over the years in the serum and CNS of chronic Parkinsonian macaques than in untreated animals, accompanied by sustained glial activation (microglia and astroglia) in the substantia nigra pars compacta. Importantly, Parkinsonian monkeys showed persistent and increasing levels of IFN-γR signaling in both microglial and astroglial cells. In addition, experiments performed in IFN-γ and TNF-α KO mice treated with MPTP revealed that, even before dopaminergic cell death can be observed, the presence of IFN-γ and TNF-α is crucial for microglial and astroglial activation, and, together, they have an important synergistic role. Both cytokines were necessary for the full level of activation to be attained in both microglial and astroglial cells. These results demonstrate that IFN-γ signaling, together with the contribution of TNF-α, have a critical and cell-specific role in stimulating and maintaining glial cell activation in Parkinsonism
Introduction to This Special Issue on Open Design at the Intersection of Making and Manufacturing
What is ‘open design’ and who gets to say what it is? In the emerging body of literature on open design, there is a clear alignment to the values and practices of free culture and open source software and hardware. Yet this same literature includes multiple, sometimes even contradictory strands of technology practice and research. These different perspectives can be traced back to free culture advocates from the 1970s to the 1990s who formulated the ideal of the internet as inherently empowering, democratizing, and countercultural. However, more recent approaches include feminist and critical interventions into hacking and making as well as corporate strategies of “open innovation” that bring end-users and consumers into the design process. What remains today seems to fall into two schools of thought. On one hand, we have the celebratory endorsements of ‘openness’ as applied to technology and design. On the other hand, we have a continuous and expanding critique of these very ideals and questions, where that critique identifies persisting forms of racial, gender, age, and class-based exclusions, and questions about the relationship between open design, labor and power remain largely unanswered
MPP+-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress
Accumulating evidence suggests that endogenous dopamine may act as a neurotoxin and thereby participate in the pathophysiology of Parkinson’s disease (PD). Cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of PD due to its ability to generate reactive oxygen species (ROS). Inhibition of COX-2 leads to neuroprotection by preventing the formation of dopamine-quinone. In this study, we examined whether dopamine mediates 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in primary ventral mesencephalic (VM) neurons, an in vitro model of PD, and if so, whether the protective effects of COX-2 inhibitors on dopamine mediated MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis result from the reduction of ROS. Reserpine, a dopamine-depleting agent, significantly reduced VM neurotoxicity induced by MPP+, whereas dopamine had an additive effect on MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis. However, inhibition of COX-2 by a selective COX-2 inhibitor (DFU) or ibuprofen significantly attenuated MPP+-induced VM cell toxicity and VM dopaminergic cell apoptosis, which was accompanied by a decrease in ROS production in VM dopaminergic neurons. These results suggest that dopamine itself mediates MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis in the presence of COX-2
Both Stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline Enantiomers Protect Striatal Terminals Against Rotenone-Induced Suppression of Dopamine Release
1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain
Bithiophene-Cored, mono-, bis-, and tris-(Trimethylammonium)- Substituted, bis-Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing
The synthesis, photophysical, and electrochemical properties of selectively mono-, bis- and tris-dimethylamino- and trimethylammonium-substituted bis-triarylborane bithiophene chromophores are presented along with the water solubility and singlet oxygen sensitizing efficiency of the cationic compounds Cat1+, Cat2+, Cat(i)2+, and Cat3+. Comparison with the mono- triarylboranes reveals the large influence of the bridging unit on the properties of the bistriarylboranes, especially those of the cationic compounds. Based on these preliminary investigations, the interactions of Cat1+, Cat2+, Cat(i)2+, and Cat3+ with DNA, RNA, and DNApore were investigated in buffered solutions. The same compounds were investigated for their ability to enter and localize within organelles of human lung carcinoma (A549) and normal lung (WI38) cells showing that not only the number of charges but also their distribution over the chromophore influences interactions and staining properties
Lipopolysaccharide and Tumor Necrosis Factor Regulate Parkin Expression via Nuclear Factor-Kappa B
Inflammation and oxidative stress have been implicated in the pathophysiology of Parkinson's disease (PD) and inhibition of microglial activation attenuates degeneration of dopaminergic (DA) neurons in animal models of PD. Loss-of-function mutations in the parkin gene, which encodes an E3 ubiquitin ligase, cause autosomal recessive parkinsonism. While most studies on Parkin have focused on its function in neurons, here we demonstrate that Parkin mRNA and protein is detectable in brain-resident microglia and peripheral macrophages. Using pharmacologic and genetic approaches, we found that Parkin levels are regulated by inflammatory signaling. Specifically, exposure to LPS or Tumor Necrosis Factor (TNF) induced a transient and dose-dependent decrease in Parkin mRNA and protein in microglia, macrophages and neuronal cells blockable by inhibitors of Nuclear Factor-Kappa B (NF-κB) signaling and not observed in MyD88-null cells. Moreover, using luciferase reporter assays, we identified an NF-κB response element in the mouse parkin promoter responsible for mediating the transcriptional repression, which was abrogated when the consensus sequence was mutated. Functionally, activated macrophages from Parkin-null mice displayed increased levels of TNF, IL-1β, and iNOS mRNA compared to wild type macrophages but no difference in levels of Nrf2, HO-1, or NQO1. One implication of our findings is that chronic inflammatory conditions may reduce Parkin levels and phenocopy parkin loss-of-function mutations, thereby increasing the vulnerability for degeneration of the nigrostriatal pathway and development of PD
- …