37 research outputs found

    Genomic characterization of the three Balkan Livestock Guardian Dogs

    Get PDF
    Balkan Livestock Guardian Dogs (LGD) were bred to help protect sheep flocks in sparsely populated, remote mountainous areas in the Balkans. The aim of this study was genomic characterization (107,403 autosomal SNPs) of the three LGD breeds from the Balkans (Karst Shepherd, Sharplanina Dog, and Tornjak). Our analyses were performed on 44 dogs representing three Balkan LGD breeds, as well as on 79 publicly available genotypes representing eight other LGD breeds, 70 individuals representing seven popular breeds, and 18 gray wolves. The results of multivariate, phylogenetic, clustering (STRUCTURE), and FST differentiation analyses showed that the three Balkan LGD breeds are genetically distinct populations. While the Sharplanina Dog and Tornjak are closely related to other LGD breeds, the Karst Shepherd is a slightly genetically distinct population with estimated influence from German Shepard (Treemix analysis). Estimated genomic diversity was high with low inbreeding in Sharplanina Dog (Ho = 0.315, He = 0.315, and FROH>2Mb = 0.020) and Tornjak (Ho = 0.301, He = 0.301, and FROH>2Mb = 0.033) breeds. Low diversity and high inbreeding were estimated in Karst Shepherds (Ho = 0.241, He = 0.222, and FROH>2Mb = 0.087), indicating the need for proper diversity management. The obtained results will help in the conservation management of Balkan LGD dogs as an essential part of the specific grazing biocultural system and its sustainable maintenance

    Genomic analysis for managing small and endangered populations: a case study in Tyrol Grey cattle.

    Get PDF
    Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (F ROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.Article 173

    On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools

    Get PDF
    Background: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. Results: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed f 4 profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. Conclusions: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population

    Runs of Homozygosity Reveal Genome-wide Autozygosity in the Austrian Fleckvieh Cattle

    Get PDF
    Runs of homozygosity (ROH) are recognized as potential inbreeding measure in studies on humans. Inbreeding coefficients derived from ROH (FROH) measure proportion of the genome arranged in long homozygous segments and highly correlate with those derived from pedigree (Fped). From that we assumed that ROH represent an alternative to pedigree inbreeding levels in studies on animals too, because pedigree can be incorrect, incomplete and can not fully explain what happened in meiosis. To confirm our premise we used pedigree and genotype data from 500 Austrian dual purpose Simmental bulls to determine correlation between FROH and Fped. ROH were obtainedusing Fortran 90 soft ware created by the authors. Proportions of genome in ROH were calculated for lengths of ROH of >1, >2, >4, >8 and >16 Mb. Pedigree data were analyzed and inbreeding coefficients for complete pedigree (FpedT) and five generations (Fped5) were calculated using ENDOG soft ware. We found low FpedT and Fped5 (means of 1.5% and 0.9%) while FROH for segments >1Mb suggested much higher values (9.0%) indicating old inbreeding that can not be traced using pedigree. The highest correlations were found between FROH calculated from ROH of length >4Mb and FpedT (0.68) that is consistent with studies on humans. We conclude that inbreeding coefficients derived from ROH are useful for measuring levels of inbreeding in cattle, because ROH are not subject to mistakes as pedigrees and calculations made from those
    corecore