190 research outputs found

    Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).</p> <p>Case report</p> <p>Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate <it>PEX </it>genes revealed a homozygous c.865_866insA mutation in the <it>PEX2 </it>gene leading to a frameshift 17 codons upstream of the stop codon. <it>PEX </it>gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).</p> <p>Conclusions</p> <p>Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.</p

    The Domain-Specific and Temperature-Dependent Protein Misfolding Phenotype of Variant Medium-Chain acyl-CoA Dehydrogenase

    Get PDF
    The implementation of expanded newborn screening programs reduced mortality and morbidity in medium-chain acyl-CoA dehydrogenase deficiency (MCADD) caused by mutations in the ACADM gene. However, the disease is still potentially fatal. Missense induced MCADD is a protein misfolding disease with a molecular loss-of-function phenotype. Here we established a comprehensive experimental setup to analyze the structural consequences of eight ACADM missense mutations (p. Ala52Val, p. Tyr67His, p. Tyr158His, p. Arg206Cys, p. Asp266Gly, p. Lys329Glu, p. Arg334Lys, p. Arg413Ser) identified after newborn screening and linked the corresponding protein misfolding phenotype to the site of side-chain replacement with respect to the domain. With fever being the crucial risk factor for metabolic decompensation of patients with MCADD, special emphasis was put on the analysis of structural and functional derangements related to thermal stress. Based on protein conformation, thermal stability and kinetic stability, the molecular phenotype in MCADD depends on the structural region that is affected by missense-induced conformational changes with the central beta-domain being particularly prone to structural derangement and destabilization. Since systematic classification of conformational derangements induced by ACADM mutations may be a helpful tool in assessing the clinical risk of patients, we scored the misfolding phenotype of the variants in comparison to p. Lys329Glu (K304E),the classical severe mutation, and p. Tyr67His (Y42H),discussed to be mild. Experiments assessing the impact of thermal stress revealed that mutations in the ACADM gene lower the temperature threshold at which MCAD loss-of-function occurs. Consequently, increased temperature as it occurs during intercurrent infections, significantly increases the risk of further conformational derangement and loss of function of the MCAD enzyme explaining the life-threatening clinical courses observed during fever episodes. Early and aggressive antipyretic treatment thus may be life-saving in patients suffering from MCADD

    Prediction of disease severity in multiple acyl-CoA dehydrogenase deficiency:a retrospective and laboratory cohort study

    Get PDF
    Multiple acyl-CoA dehydrogenase deficiency (MADD) is an ultra-rare inborn error of mitochondrial fatty acid oxidation (FAO) and amino acid metabolism. Individual phenotypes and treatment response can vary markedly. We aimed to identify markers that predict MADD phenotypes. We performed a retrospective nationwide cohort study; then developed an MADD-disease severity scoring system (MADD-DS3) based on signs and symptoms with weighed expert opinions; and finally correlated phenotypes and MADD-DS3 scores to FAO flux (oleate and myristate oxidation rates) and acylcarnitine profiles after palmitate loading in fibroblasts. Eighteen patients, diagnosed between 1989 and 2014, were identified. The MADD-DS3 entails enumeration of eight domain scores, which are calculated by averaging the relevant symptom scores. Lifetime MADD-DS3 scores of patients in our cohort ranged from 0 to 29. FAO flux and [U-13C]C2-, C5-, and [U-13C]C16-acylcarnitines were identified as key variables that discriminated neonatal from later onset patients (all P <.05) and strongly correlated to MADD-DS3 scores (oleate: r = −.86; myristate: r = −.91; [U-13C]C2-acylcarnitine: r = −.96; C5-acylcarnitine: r =.97; [U-13C]C16-acylcarnitine: r =.98, all P <.01). Functional studies in fibroblasts were found to differentiate between neonatal and later onset MADD-patients and were correlated to MADD-DS3 scores. Our data may improve early prediction of disease severity in order to start (preventive) and follow-up treatment appropriately. This is especially relevant in view of the inclusion of MADD in population newborn screening programs

    Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder

    Get PDF
    Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C&gt;T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C&gt;T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p

    Clinical and biochemical characterization of four patients with mutations in ECHS1

    Get PDF
    Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. In addition, because of the Leigh-like presentation, we studied enzymes involved in bioenergetics. Metabolite, enzymatic, protein and genetic analyses were performed in four patients, including two siblings. Palmitate loading studies in fibroblasts were performed to study mitochondrial ÎČ-oxidation. In addition, enoyl-CoA hydratase activity was measured with crotonyl-CoA, methacrylyl-CoA, tiglyl-CoA and 3-methylcrotonyl-CoA both in fibroblasts and liver to further study the role of SCEH in different metabolic pathways. Analyses of pyruvate dehydrogenase and respiratory chain complexes were performed in multiple tissues of two patients. All patients were either homozygous or compound heterozygous for mutations in the ECHS1 gene, had markedly reduced SCEH enzymatic activity and protein level in fibroblasts. All patients presented with lactic acidosis. The first two patients presented with vacuolating leukoencephalopathy and basal ganglia abnormalities. The third patient showed a slow neurodegenerative condition with global brain atrophy and the fourth patient showed Leigh-like lesions with a single episode of metabolic acidosis. Clinical picture and metabolite analysis were not consistent with a mitochondrial fatty acid oxidation disorder, which was supported by the normal palmitate loading test in fibroblasts. Patient fibroblasts displayed deficient hydratase activity with different substrates tested. Pyruvate dehydrogenase activity was markedly reduced in particular in muscle from the most severely affected patients, which was caused by reduced expression of E2 protein, whereas E2 mRNA was increased. Despite its activity towards substrates from different metabolic pathways, SCEH appears to be only crucial in valine metabolism, but not in isoleucine metabolism, and only of limited importance for mitochondrial fatty acid oxidation. In severely affected patients SCEH deficiency can cause a secondary pyruvate dehydrogenase deficiency contributing to the clinical presentatio

    Heimler Syndrome is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6

    Get PDF
    Heimler syndrome (HS) is a rare recessive disorder characterized by sensorineural hearing loss (SNHL), amelogenesis imperfecta, nail abnormalities and occasional or late onset retinal pigmentation. We ascertained eight families with HS, and - using a whole exome sequencing approach - identified biallelic mutations in PEX1 or PEX6 in six of them. Loss of function mutations in both genes are known causes of a spectrum of autosomal recessive peroxisome biogenesis disorders (PBDs), including Zellweger syndrome. PBDs are characterized by leukodystrophy, hypotonia, SNHL, retinopathy, and skeletal, craniofacial, and liver abnormalities. We demonstrate that each HS family has at least one hypomorphic allele that results in extremely mild peroxisomal dysfunction. Although individuals with HS share some subtle clinical features found in PBDs, the overlap is minimal and the diagnosis was not suggested by routine blood and skin fibroblast analyses used to detect PBDs. In conclusion, our findings define Heimler syndrome as a mild PBD, expanding the pleiotropy of mutations in PEX1 and PEX6

    Bile acid analysis in human disorders of bile acid biosynthesis

    No full text
    Bile acids facilitate the absorption of lipids in the gut, but are also needed to maintain cholesterol homeostasis, induce bile flow, excrete toxic substances and regulate energy metabolism by acting as signaling molecules. Bile acid biosynthesis is a complex process distributed across many cellular organelles and requires at least 17 enzymes in addition to different metabolite transport proteins to synthesize the two primary bile acids, cholic acid and chenodeoxycholic acid. Disorders of bile acid synthesis can present from the neonatal period to adulthood and have very diverse clinical symptoms ranging from cholestatic liver disease to neuropsychiatric symptoms and spastic paraplegias. This review describes the different bile acid synthesis pathways followed by a summary of the current knowledge on hereditary disorders of human bile acid biosynthesis with a special focus on diagnostic bile acid profiling using mass spectrometry. (C) 2017 Elsevier Ltd. All rights reserve
    • 

    corecore