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Summary
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an ultra-rare inborn error

of mitochondrial fatty acid oxidation (FAO) and amino acid metabolism. Individual

phenotypes and treatment response can vary markedly. We aimed to identify

markers that predict MADD phenotypes. We performed a retrospective nationwide

cohort study; then developed an MADD-disease severity scoring system (MADD-

DS3) based on signs and symptoms with weighed expert opinions; and finally cor-

related phenotypes and MADD-DS3 scores to FAO flux (oleate and myristate oxi-

dation rates) and acylcarnitine profiles after palmitate loading in fibroblasts.

Eighteen patients, diagnosed between 1989 and 2014, were identified. The MADD-

DS3 entails enumeration of eight domain scores, which are calculated by averaging

the relevant symptom scores. Lifetime MADD-DS3 scores of patients in our cohort

ranged from 0 to 29. FAO flux and [U-13C]C2-, C5-, and [U-13C]

C16-acylcarnitines were identified as key variables that discriminated neonatal

from later onset patients (all P < .05) and strongly correlated to MADD-DS3 scores

Abbreviations: DS3, disease severity scoring system; ETF, electron
transfer flavoprotein; FAO, fatty acid oxidation; IEM, inborn error of
metabolism; MADD, multiple acyl-CoA dehydrogenase deficiency.; NBS,
newborn bloodspot screening.
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(oleate: r = −.86; myristate: r = −.91; [U-13C]C2-acylcarnitine: r = −.96;
C5-acylcarnitine: r = .97; [U-13C]C16-acylcarnitine: r = .98, all P < .01). Func-

tional studies in fibroblasts were found to differentiate between neonatal and later

onset MADD-patients and were correlated to MADD-DS3 scores. Our data may

improve early prediction of disease severity in order to start (preventive) and

follow-up treatment appropriately. This is especially relevant in view of the inclu-

sion of MADD in population newborn screening programs.

KEYWORD S

disease severity scoring system, fatty acid oxidation, functional fibroblast studies, multiple acyl-CoA

dehydrogenase deficiency, prognostic marker

1 | INTRODUCTION

Multiple acyl-CoA dehydrogenase deficiency (MADD, or
glutaric aciduria type II; MIM #231680) is an ultra-rare
(ie, <1:50 000)1 mitochondrial fatty acid oxidation
(FAO) disorder caused by pathogenic variants in the
genes encoding the electron transfer flavoproteins (ETFs;
ETFA or ETFB) or ETF dehydrogenase (ETFDH). The
disrupted transfer of reduced flavin adenine dinucleotides
toward the mitochondrial respiratory chain results in an
impaired mitochondrial FAO and accumulation of toxic
metabolites.2 MADD-patients are historically classified
into three groups: neonatal-onset with/without congenital
anomalies (type I/II) or with a later onset, relatively mild
phenotype (type III).2 Patients with a neonatal onset suf-
fer from life-threatening symptoms such as metabolic
derangements, cardiomyopathy, leukodystrophy, and
hypotonia. The clinical course of later onset patients
ranges from recurrent hypoglycemia to cyclic vomiting,
lipid storage myopathy, exercise intolerance, and chronic
fatigue.2 Symptoms in later onset patients can also be
fatal, but only in rare cases and usually associated with
metabolic stress.3-5 Patients are identified through clini-
cal presentation and in some countries also via population
newborn bloodspot screening (NBS).6,7 Treatment
options include dietary fat- and protein- restrictions,
fasting avoidance, and supplementation with carnitine,
glycine, and riboflavin. Despite early identification and
treatment, neonatal mortality remains high.2,7,8

Several laboratory studies can be used to characterize
MADD-patients, including urine organic acid analysis,
plasma acylcarnitine profiling, and ultimately molecular
studies to pinpoint the genetic defect.2,9,10 Unfortunately,
prognostic biomarkers that may predict disease severity are
not available. In fibroblasts, FAO flux activities provide an
estimate of the rate of mitochondrial FAO, whereas
acylcarnitine profiling improves insight on both the site and
the severity of the enzymatic block.11 In very long-chain

acyl-CoA dehydrogenase deficiency, long-chain FAO flux
analysis in fibroblasts12,13 has been shown to correlate with
the phenotype in patients using a clinical severity score.14

Comparable studies in fibroblasts of neonatal onset MADD-
patients demonstrated a markedly reduced FAO activity, in
contrast to a less diminished or even normal flux in fibro-
blasts of later-onset patients.8,15,16 To date, outcomes of
functional studies in fibroblasts have not been correlated
with standardized MADD disease severity.

To identify markers that predict disease phenotypes, we
retrospectively studied a nationwide cohort of MADD-
patients, developed an MADD-disease severity scoring sys-
tem (DS3) as described previously for other IEMs,14,17-19

and correlated phenotypes and MADD-DS3 scores to the
results of functional studies in fibroblasts.

2 | METHODS

2.1 | Retrospective cohort study

The medical care of Dutch pediatric patients with inborn
errors of metabolism (IEM) is centralized in the metabolic
divisions of six university hospitals. The pediatric metabolic
divisions of all university hospitals and their affiliated meta-
bolic laboratories were asked to participate. The Medical
Ethical Committee of the University Medical Center Gro-
ningen stated that the Medical Research Involving Human
Subjects Act was not applicable and that official study
approval by the Medical Ethical Committee was not required
(METc code 2014/249).

Patients with an MADD phenotype or biochemical pro-
file (plasma acylcarnitines or urinary organic acids),
supported by at least one identified variant in ETFA, ETFB,
or ETFDH, were included. Outcome parameters included
data on clinical history, follow-up, and outcomes of labora-
tory studies performed according to certified, standardized
protocols. All data were obtained by examining the medical
files and documented in case record forms which were
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discussed by WR and TD. Data collection was completed in
December 2014.

2.2 | Multiple acyl-CoA dehydrogenase
deficiency-disease severity scoring system

A systematic literature review and a meta-analysis were per-
formed to establish MADD associated disease symptoms and
-domains and to identify their occurrence rates. The “PRI-
SMA-IPD”-guidelines were followed as accurately as possi-
ble.20 Data extraction included reported clinical symptoms
and general patient characteristics. Disease domains were
defined based on organ systems involved in MADD. Occur-
rence rates were expressed as numbers and percentages.

The relative importance of disease domains and symp-
toms to be included in the MADD-DS3 was determined
using the online survey software Qualtrics (Qualtrics, Provo,
Utah). Health care professionals attending “INFORM 2017”
(annual conference of the International Network for Fatty
Acid Oxidation Research and Management, Rio de Janeiro,
Brazil), healthcare providers of MADD(−like)-patients
treated with sodium-D,L-3-hydroxybutyrate and co-authors
of this study, were invited to prioritize and select disease
domains and symptoms based on their influence on the dis-
ease burden in patients.

Results of the previous steps provided an outline for the
scoring system. The MADD-DS3 was composed according
to the average scoring method, as described previously.18

Contribution of disease domains and symptoms to the total
MADD-DS3 score was weighed using their relation to
MADD morbidity and mortality.

2.3 | Functional studies in cultured skin
fibroblasts

The functional fibroblast studies were performed within the
context of the “Human Tissue and Medical Research: Code
of Conduct for Responsible Use” (Federation of Dutch Med-
ical Scientific Societies, 2011, https://www.federa.
org/codes-conduct). Patient fibroblasts were cultured in
HAM F-10 at 37�C. FAO flux analysis was performed in
fibroblasts from patients by measuring both [9,10-3H]oleic
acid and [9,10-3H]myristic acid oxidation rates, essentially
as described previously.12,13 Oxidation rates were calculated
as nanomoles of fatty acid oxidized per hour per milligram
of cellular protein. Results are expressed as percentage of
the mean activity measured in fibroblasts of two control sub-
jects in the same experiment. Acylcarnitine profiling by tan-
dem mass spectrometry was performed after incubating the
fibroblasts for 96 hours in minimum essential medium sup-
plemented with 120 μM [U-13C]palmitate and 0.4 mM L-
carnitine at 37�C, 5% CO2, as described previously.14,21 All

incubations were performed in quadruplicate (FAO flux) or
duplicate (acylcarnitine profiling) in least two independent
experiments for each functional test. The presented results
are the mean of independent experiments.

2.4 | Statistical analysis

Data analysis was performed using GraphPad Prism v7.02
(GraphPad Software, La Jolla, California) and SIMCA Soft-
ware, v14.0 (Umetrics, Umea, Sweden). Categorical variables
are presented as numbers and percentages. Remaining contin-
uous variables are presented as median (range). Fisher's exact
test or Mann-Whitney U test were used to test for significant
differences between neonatal and later onset patients. P-
values of <.05 were considered statistically significant. A
principal component analysis and discriminant analysis was
used for visualization of the multi-parameter dataset in order
to identify key variables. After passing D'Agostino-Pearson
omnibus test for normality, Pearson's correlation analysis was
used to test the correlation between MADD-DS3 scores and
key variables from functional studies in fibroblasts. The Pear-
son correlation coefficient, r, defines the correlation's
strength. Patients identified after population NBS or family
screening were excluded from inferential and correlation
analysis because early instituted treatment may have affected
the natural history of the disease.14

3 | RESULTS

3.1 | Retrospective cohort study

In total, 18 patients diagnosed between 1989 and 2014 were
identified. Eight additional patients with (biochemical) phe-
notypes suggestive for MADD were excluded because the
diagnosis was not supported by DNA analysis. Six out of
18 patients (33%) were classified as neonatal onset MADD,
all with a clinical onset within the first week of life. Struc-
tural congenital anomalies were reported in one patient (6%).
Six patients (33%) were only identified after population
NBS or family screening. Affected organ systems included
the heart, central nervous system, liver, and muscle. Respira-
tory insufficiency requiring mechanical ventilation was
reported in four patients (22%). The summarized patient
characteristics are presented in Table 1.

In total, 16 different genetic variants were detected of
which nine have not been described previously. All reported
plasma acylcarnitine profiles and 15 urinary organic acid
profiles (83%) at diagnosis demonstrated abnormalities
corresponding to MADD (ie, ≥1 increased metabolite indic-
ative of MADD). The glutaric aciduria type II-index, as
defined by the New England Newborn Screening Program,7

could be calculated in four neonatal onset patients who all
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demonstrated values >0.005, corresponding to “high risk”
MADD. The index score was also >0.005 in three later
onset patients, while in two later onset patients it was
<0.005. The summarized diagnostic parameters are shown
in Table 2.

3.2 | Multiple acyl-CoA dehydrogenase
deficiency-disease severity scoring system

The extensive literature search strategy, screening protocol, and
a flowchart of the screening process are presented in Supporting
Information Data S1. In short, the search strategy identified
776 publications of which 78 were included. Data of
413 patients were extracted for further analysis. Age at onset
was reported in 396 patients of whom 50 with a neonatal onset
(13%). Neonatal onset patients more often had genetic variants
in ETFA (neonatal onset patients: 33% vs later onset patients:
3%, P < .0001) and ETFB (18% vs 1%, P < .0001). In contrast,
ETFDH variants were more frequently identified in later onset
patients (48% vs 96%, P < .0001). The occurrence of two
genetic variants expected to have a large effect on protein func-
tion (eg, nonsense and stop-loss variants, deletions, insertions,
duplications, and splicing defects) was increased in neonatal
compared to later onset patients (45% vs 1%, P < .0001). This
was also significantly related to the incidence of congenital
anomalies (85% vs 20%, P = .0004). In contrast, compound het-
erozygous missense variants were more frequently identified in
later onset patients (30% vs 82%, P < .0001).

Based on the reported MADD associated symptoms, six
disease domains were defined including a cardiac-, central
nervous system-, peripheral nervous system-, respiratory
system-, liver-, and muscle domain. The following clinical
symptoms were more frequently reported in neonatal onset
patients compared to later onset patients: cardiac (42% vs
3%, P < .0001; ie, cardiomyopathy, arrhythmias), central
nervous system (12% vs 2%, P = .0041; ie, leukodystrophy),
hepatic (92% vs 21%, P < .0001; ie, hypoglycemia, liver
dysfunction/failure), and respiratory problems (38% vs 14%,
P = .0001). Muscle related symptoms including muscle
weakness, exercise intolerance and myalgia were more fre-
quently reported in later onset patients compared to neonatal
onset patients (60% vs 93%, P < .0001), except for hypoto-
nia which was reported more often in neonatal onset
patients, as described in Supporting Information Data S1.

Nine health care professionals participated in our survey.
Supporting Information Data S2 presents the data on the priori-
tization and selection of disease domains and symptoms to be
included in the MADD-DS3. This resulted in (a) addition of the
domains “congenital anomalies,” “patient reported,” and “age at
onset,” and the symptom “cognitive impairment,” and
(b) respiratory symptoms being included within the muscle
domain. Next, the MADD-DS3 was composed of eight

domains with one to five symptoms each. The final MADD-
DS3 score is the sum of the individual domain scores, which
are each calculated by averaging the available symptom scores
per domain. Figure 1 presents the working model of the
MADD-DS3 with a total score of 51. An automated tool of the
MADD-DS3 is presented in Supporting Information Data S2.

The lifetime MADD-DS3 score of the MADD-patients
included in the retrospective cohort ranged from 0 to 29, as
presented in Table 1. Scores of 11 patients were included in
the inferential analysis. MADD-DS3 scores differed signifi-
cantly between neonatal and later onset patients (median
23 (range 11-29) vs 4 (2-7), P = .0043).

3.3 | Functional studies in cultured skin
fibroblasts

Cultured skin fibroblasts of 13 patients were available for
functional studies. Three neonatal and five later onset index
patients were included in the inferential analyses. Oleate and
myristate flux rates were significantly lower in fibroblasts
from neonatal onset patients compared to patients with a
later onset (median 13% (range 11-13%) vs 94% (48-103%),
P = .0357; 1% (0-7%) vs 70% (57-108%), P = .0357, respec-
tively). Acylcarnitine profiling in fibroblasts loaded with
[U-13C]palmitate demonstrated significantly increased C5-
and [U-13C]C16-acylcarnitine concentrations in neonatal
onset patients compared to later onset patients (5 (4.1-5.8)
vs 0.5 (0.3-1.3) nmol/mg protein/96 hours, P = .0357; 18.6
(16.5-30.1) vs 1.6 (1.1-3.9) nmol/mg protein/96 hours,
P = .0357, respectively). [U-13C]C2-, [U-13C]C4-, [U-13C]
C6-, and [U-13C]C8-acylcarnitine were significantly
decreased in neonatal onset patients compared to later onset
patients (1.6 (0.2-1.9) vs 16.1 (11.8-17.2) nmol/mg pro-
tein/96 hours, P = .0357; 0.0 (0.0-0.2) vs 0.5 (0.4-1.7)
nmol/mg protein/96 hours, P = .0179; 0.1 (0.0-0.1) vs 0.5
(0.4-1.5) nmol/mg protein/96 hours, P = .0357; and 0.1
(0.0-0.3) vs 1.1 (0.5-4.0) nmol/mg protein/96 hours,
P = .0357, respectively). The principal component analysis
model identified FAO flux activities, [U-13C]C2-, C5-, and
[U-13C]C16-acylcarnitine as key variables for differentiation
between neonatal and later onset patients. Discrimination
between neonatal and later onset patients by the identified
key variables and the individual outcomes combined with
the MADD-DS3 scores are presented in Figure 2.

3.4 | Correlation between disease severity and
functional fibroblast studies

Three neonatal and five later onset patients were included in
the correlation analyses between MADD-DS3 scores and the
identified key variables. A strong association was found
between oleate flux activity and myristate flux activity. This
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enabled differentiation between neonatal and later onset
patients, as presented in Figure 3A. Strong negative correla-
tions were observed between MADD-DS3 scores and oleate
flux activity, and MADD-DS3 scores and myristate flux
activity, as respectively demonstrated in Figure 3B,C.
MADD-DS3 scores were also strongly associated with
[U-13C]C2-, C5-, and [U-13C]C16-acylcarnitine (Pearson
r = −.96; P = .0002; Pearson r = .97; P < .0001; and Pear-
son r = .98; P < .0001, respectively). Oleate and myristate
flux activity strongly correlated to [U-13C]C2- (Pearson
r = .82; P = .0121; and Pearson r = .93; P = .0009,

respectively), C5- (Pearson r = −.88; P = .0044; and Pear-
son r = −.93; P = .0009, respectively), and [U-13C]
C16-acylcarnitine (Pearson r = −.88; P = .0042; and Pear-
son r = .86; P = .0058, respectively).

4 | DISCUSSION

Functional studies in fibroblasts can be used to predict the
potential risk of clinical symptom development in MADD
patients. Our study demonstrates that neonatal onset and

DOMAIN ITEM
DISEASE SEVERITY SCORE SYMPTOM

SCORE
DOMAIN 
SCORE0 3 6 9

AGE AT ONSET First onset < 1 month
of age

No Yes

CONGENITAL 
ANOMALIES

Polycystic kidneys,
hypospadias, neuronal 
migration defects

No Yes 

CARDIAC

Cardiomegalya No > 2 SD

Cardiomyopathyb No Yes 

Arrhythmias No Yes 

CNS

Leukodystrophy No Yes 

Other structural brain 
defects

No Yes 

Extrapyramidal 
symptoms/dystonia

No Yes 

Cognitive impairment No Yes 

PNS
Sensory neuropathy No Yes 

Neuropathic EMG No Yes 

LIVER

Hepatomegalyc No > 2 SD

Hypoglycemia No
Glucose 

< 2.6 
mmol/L 

Dysfunction/failured No Yes 

Encephalopathy No Yes 

MUSCLE

Muscle symptomse No Yes 

Rhabdomyolysisf No Yes 

Lipid storage 
myopathy

No Yes 

Myopathic EMG No Yes 

Respiratory 
insufficiency requiring 
mechanical ventilation

No Yes 

PATIENT 
REPORTED
OUTCOME

"Considering how 
MADD affects
you/your child, rate
influence on overall 
well-being during the 
last 3 months or since 
the most recent 
management change"

No 
influence 

Minor 
influence

Moderate 
influence 

Major 
influence 

Total 
MADD-DS3 

score

FIGURE 1 Multiple acyl-CoA dehydrogenase deficiency-disease severity scoring system. The total MADD-DS3 score is the sum of all
domain scores with a maximum of 51. An automated tool is presented in Supporting Information Data S2. Abbreviations: CK, creatinine kinase;
CNS, central nervous system; EMG, electromyogram; NYHA, New York heart association classification; PNS, peripheral nervous system; SD,
Standard deviation
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later onset MADD patients could be distinguished based on
their FAO flux activities and acylcarnitine profiling in the
medium after palmitate loading in fibroblasts. There was a
strong correlation between individual FAO flux activities
and MADD-DS3 scores. Both functional tests provide useful
information for (early) phenotype prediction in individual
MADD patients.

Neonatal onset patients demonstrated low flux activities
combined with particularly high [U-13C]C16-acylcarnitine
levels and low medium- and short-chain acylcarnitines

concentrations, indicating an almost complete block of
FAO. In contrast, flux activities in later onset patients varied
from normal to (mildly) decreased combined with normal to
(mildly) increased acylcarnitine concentrations of variable
chain lengths. The increase in (unlabeled) C5-acylcarnitine
concentration in neonatal onset patients suggests a pro-
found deficiency of isovaleryl-CoA dehydrogenase. Com-
putational studies already suggested that differences in
acylcarnitine profiles and FAO flux capacities might be rel-
evant to clinical phenotypes, and can be explained by
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FIGURE 2 Differences in fatty acid oxidation flux activities and acylcarnitine profiling between neonatal and later onset multiple acyl-CoA
dehydrogenase deficiency. Outcomes of functional studies in fibroblasts of three neonatal onset (○) and five later onset MADD-patients (●). Scatter
dot plots (mean with SD) of FAO flux activities measured with ([9,10-3H]oleate and [9,10-3H]myristate (A), and concentrations of [U-13C]C2-, C5,
and [U-13C]C16-acylcarnitines in the medium after [U-13C]palmitate loading for 96 hours at 37�C (B). Individual outcomes of FAO flux activities
(C), and acylcarnitine profiling (D) plotted against MADD-DS3 scores (right y-axis). Patient numbers refer to identification numbers in Tables 1 and
2, with the order of display based on MADD-DS3 scores
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substrate competition.22 In this study, it was not possible to
extrapolate the differences identified in fibroblast
acylcarnitine profiles to plasma and dried blood spot sam-
ples due to limited sample availability and possible influ-
ence of interlaboratory, analytical differences. Since blood
sampling is less invasive than a skin biopsy and could
enable immediate risk prediction after identification, fur-
ther studies are warranted.

Our results suggest that a low FAO flux is associated
with the development of severe symptoms including leuko-
dystrophy and cardiomyopathy. Hence these symptoms
should be monitored in patients with a predicted severe phe-
notype. It should be noted that the functional studies in

fibroblasts were only performed at 37�C. In some very long-
chain acyl-CoA dehydrogenase deficient-patients with mild
phenotypes and a relatively high oleate flux activity at 37�C,
performing the assays at 40�C resulted in a 40% decrease in
flux activity.14 It is very well possible that FAO flux in
fibroblasts is also temperature sensitive at least in a subset of
MADD patients. Although generalization of these in vitro
studies toward in vivo observations remains debatable, it can
be hypothesized that an increased body temperature, for
example during intercurrent illness, may cause a drop in
FAO flux activity which poses a risk for symptom develop-
ment. A previous in vitro study demonstrated an activity
decay in ETFA variants induced by physiological thermal
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stress.23 Thus, even in patients with a relatively high flux activ-
ity and low MADD-DS3 scores, the risk to develop potential,
life-threatening symptoms should still be considered.

To enable standardized clinical description of disease
severity in patients from our cohort, we developed an
MADD-DS3 based on existing literature and weighed expert
opinions. DS3's provide a method for systematic assessment
of disease burden and have been developed for only a few
other IEMs.14,17-19 The used average scoring method elimi-
nates biased estimates in case of missing items when com-
pleting the score.18 The system is designed to be easy to use
with no required assessments beyond standard patient care.
However, in order to facilitate clinical use during follow-up,
prospective, longitudinal validation is warranted, for
instance during monitoring of MADD patients on (prophy-
lactic) treatment with sodium-D,L-3-hydroxybutyrate.24,25

The present study has several methodological limitations.
First, an inclusion bias was introduced because we only
included patients via pediatric metabolic centers. Second,
the retrospectively cohort data covers a period of >20 years,
causing a risk of information bias. Third, the interferential
and correlation analysis comprises a relatively small sample.
Therefore, the authors propose confirmation and validation
in a larger (international) patient population, possibly with
the help of international networks such as “INFORM” and
“MetabERN” (European Reference Network for Hereditary
Metabolic Disorders). Finally, genetic defects in at least five
other metabolic pathways dependent of flavin adenine dinu-
cleotides are recognized to cause clinical and biochemical
MADD-like profiles.26-33 Although promotor region- or
intronic variants might have been overlooked, it can also not
be excluded that patients in whom DNA analysis only dem-
onstrated one genetic variant, actually suffer from an
MADD-like disease.

5 | CONCLUSION

This study shows the value of functional studies in fibro-
blasts and an MADD-DS3 for characterization and risk strat-
ification of MADD-patients. Our data can be used to
improve (early) identification of patients at risk for severe
symptoms and metabolic derangements in order to start pre-
ventive treatment and follow-up appropriately. This is espe-
cially relevant in view of the inclusion of MADD in
population NBS programs.
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