26 research outputs found

    ADRB2 Arg16Gly polymorphism, lung function, and mortality: results from the Atherosclerosis Risk in Communities study

    Get PDF
    BACKGROUND: Growing evidence suggests that the Arg16Arg genotype of the beta-2 adrenergic receptor gene may be associated with adverse effects of beta-agonist therapy. We sought to examine the association of beta-agonist use and the Arg16Gly polymorphism with lung function and mortality among participants in the Atherosclerosis Risk in Communities study. METHODOLOGY AND PRINCIPAL FINDINGS: We genotyped study participants and analyzed the association of the Arg16Gly polymorphism and beta-agonist use with lung function at baseline and clinical examination three years later and with all-cause mortality during 10 years of follow-up. Lung function was characterized by percent-predicted forced expiratory volume in 1 second. Associations were examined separately for blacks and whites. Black beta-agonist users with the Arg/Arg genotype had better lung function at baseline and at the second clinical visit than those with Arg/Gly and Gly/Gly genotypes. Adjusted mean percent-predicted FEV(1) was 21% higher in Arg/Arg subjects compared to Gly/Gly at baseline (p = 0.01) and 20% higher than Gly/Gly at visit 2 (p = 0.01). Arg/Gly subjects had adjusted percent-predicted FEV(1) 17% lower than Arg/Arg at baseline but were similar to Arg/Arg subjects at visit 2. Although black beta-agonist users with the Arg/Arg genotype appeared to have better crude survival rates, the association between genotype and all-cause mortality was inconclusive. We found no difference in lung function or mortality by genotype among blacks who did not use beta-agonists or among whites, regardless of beta-agonist use. CONCLUSIONS: Black beta-agonist users with the ADRB2 Arg16Arg genotype had better lung function, and, possibly, better overall survival compared to black beta-agonist users with the Gly16Gly genotype. Our findings highlight the need for additional studies of sufficient size and statistical power to allow examination of outcomes among beta-agonist users of different races and genotypes

    ADRB2 Arg16Gly Polymorphism, Lung Function, and Mortality: Results from the Atherosclerosis Risk in Communities Study

    Get PDF
    BACKGROUND: Growing evidence suggests that the Arg16Arg genotype of the beta-2 adrenergic receptor gene may be associated with adverse effects of beta-agonist therapy. We sought to examine the association of beta-agonist use and the Arg16Gly polymorphism with lung function and mortality among participants in the Atherosclerosis Risk in Communities study. METHODOLOGY AND PRINCIPAL FINDINGS: We genotyped study participants and analyzed the association of the Arg16Gly polymorphism and beta-agonist use with lung function at baseline and clinical examination three years later and with all-cause mortality during 10 years of follow-up. Lung function was characterized by percent-predicted forced expiratory volume in 1 second. Associations were examined separately for blacks and whites. Black beta-agonist users with the Arg/Arg genotype had better lung function at baseline and at the second clinical visit than those with Arg/Gly and Gly/Gly genotypes. Adjusted mean percent-predicted FEV(1) was 21% higher in Arg/Arg subjects compared to Gly/Gly at baseline (p = 0.01) and 20% higher than Gly/Gly at visit 2 (p = 0.01). Arg/Gly subjects had adjusted percent-predicted FEV(1) 17% lower than Arg/Arg at baseline but were similar to Arg/Arg subjects at visit 2. Although black beta-agonist users with the Arg/Arg genotype appeared to have better crude survival rates, the association between genotype and all-cause mortality was inconclusive. We found no difference in lung function or mortality by genotype among blacks who did not use beta-agonists or among whites, regardless of beta-agonist use. CONCLUSIONS: Black beta-agonist users with the ADRB2 Arg16Arg genotype had better lung function, and, possibly, better overall survival compared to black beta-agonist users with the Gly16Gly genotype. Our findings highlight the need for additional studies of sufficient size and statistical power to allow examination of outcomes among beta-agonist users of different races and genotypes

    Evaluation of Mannose Binding Lectin Gene Variants in Pediatric Influenza Virus-Related Critical Illness

    Get PDF
    Background: Mannose-binding lectin (MBL) is an innate immune protein with strong biologic plausibility for protecting against influenza virus-related sepsis and bacterial co-infection. In an autopsy cohort of 105 influenza-infected young people, carriage of the deleterious MBL gene MBL2_Gly54Asp(“B”) mutation was identified in 5 of 8 individuals that died from influenza-methicillin-resistant Staphylococcus aureus (MRSA) co-infection. We evaluated MBL2 variants known to influence MBL levels with pediatric influenza-related critical illness susceptibility and/or severity including with bacterial co-infections.Methods: We enrolled children and adolescents with laboratory-confirmed influenza infection across 38 pediatric intensive care units from November 2008 to June 2016. We sequenced MBL2 “low-producer” variants rs11003125(“H/L”), rs7096206(“Y/X”), rs1800450Gly54Asp(“B”), rs1800451Gly57Glu(“C”), rs5030737Arg52Cys(“D”) in patients and biologic parents. We measured serum levels and compared complement activity in low-producing homozygotes (“B/B,” “C/C”) to HYA/HYA controls. We used a population control of 1,142 healthy children and also analyzed family trios (PBAT/HBAT) to evaluate disease susceptibility, and nested case-control analyses to evaluate severity.Results: We genotyped 420 patients with confirmed influenza-related sepsis: 159 (38%) had acute lung injury (ALI), 165 (39%) septic shock, and 30 (7%) died. Although bacterial co-infection was diagnosed in 133 patients (32%), only MRSA co-infection (n = 33, 8% overall) was associated with death (p < 0.0001), present in 11 of 30 children that died (37%). MBL2 variants predicted serum levels and complement activation as expected. We found no association between influenza-related critical illness susceptibility and MBL2 variants using family trios (633 biologic parents) or compared to population controls. MBL2 variants were not associated with admission illness severity, septic shock, ALI, or bacterial co-infection diagnosis. Carriage of low-MBL producing MBL2 variants was not a risk factor for mortality, but children that died did have higher carriage of one or more B alleles (OR 2.3; p = 0.007), including 7 of 11 with influenza MRSA-related death (vs. 2 of 22 survivors: OR 14.5, p = 0.0002).Conclusions:MBL2 variants that decrease MBL levels were not associated with susceptibility to pediatric influenza-related critical illness or with multiple measures of critical illness severity. We confirmed a prior report of higher B allele carriage in a relatively small number of young individuals with influenza-MRSA associated death

    Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI): study protocol

    Full text link
    Abstract Background The Study of Healthcare Personnel with Influenza and other Respiratory Viruses in Israel (SHIRI) prospectively follows a cohort of healthcare personnel (HCP) in two hospitals in Israel. SHIRI will describe the frequency of influenza virus infections among HCP, identify predictors of vaccine acceptance, examine how repeated influenza vaccination may modify immunogenicity, and evaluate influenza vaccine effectiveness in preventing influenza illness and missed work. Methods Cohort enrollment began in October, 2016; a second year of the study and a second wave of cohort enrollment began in June 2017. The study will run for at least 3 years and will follow approximately 2000 HCP (who are both employees and members of Clalit Health Services [CHS]) with routine direct patient contact. Eligible HCP are recruited using a stratified sampling strategy. After informed consent, participants complete a brief enrollment survey with questions about occupational responsibilities and knowledge, attitudes, and practices about influenza vaccines. Blood samples are collected at enrollment and at the end of influenza season; HCP who choose to be vaccinated contribute additional blood one month after vaccination. During the influenza season, participants receive twice-weekly short message service (SMS) messages asking them if they have acute respiratory illness or febrile illness (ARFI) symptoms. Ill participants receive follow-up SMS messages to confirm illness symptoms and duration and are asked to self-collect a nasal swab. Information on socio-economic characteristics, current and past medical conditions, medical care utilization and vaccination history is extracted from the CHS database. Information about missed work due to illness is obtained by self-report and from employee records. Respiratory specimens from self-collected nasal swabs are tested for influenza A and B viruses, respiratory syncytial virus, human metapneumovirus, and coronaviruses using validated multiplex quantitative real-time reverse transcription polymerase chain reaction assays. The hemagglutination inhibition assay will be used to detect the presence of neutralizing influenza antibodies in serum. Discussion SHIRI will expand our knowledge of the burden of respiratory viral infections among HCP and the effectiveness of current and repeated annual influenza vaccination in preventing influenza illness, medical utilization, and missed workdays among HCP who are in direct contact with patients. Trial registration NCT03331991 . Registered on November 6, 2017.https://deepblue.lib.umich.edu/bitstream/2027.42/146186/1/12879_2018_Article_3444.pd

    Effectiveness of Covid-19 Vaccines in Ambulatory and Inpatient Care Settings

    Get PDF
    BACKGROUND There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS We conducted a study involving adults (≥50 years of age) with Covid-19–like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients’ vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19–associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. Methods: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. Results: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. Conclusions: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.)

    Effectiveness of 2-Dose Vaccination with mRNA COVID-19 Vaccines Against COVID-19–Associated Hospitalizations Among Immunocompromised Adults — Nine States, January–September 2021

    Get PDF
    What is already known about this topic? Studies suggest that immunocompromised persons who receive COVID-19 vaccination might not develop high neutralizing antibody titers or be as protected against severe COVID-19 outcomes as are immunocompetent persons. What is added by this report? Effectiveness of mRNA vaccination against laboratory-confirmed COVID-19–associated hospitalization was lower (77%) among immunocompromised adults than among immunocompetent adults (90%). Vaccine effectiveness varied considerably among immunocompromised patient subgroups. What are the implications for public health practice? Immunocompromised persons benefit from COVID-19 mRNA vaccination but are less protected from severe COVID-19 outcomes than are immunocompetent persons. Immunocompromised persons receiving mRNA COVID-19 vaccines should receive 3 doses and a booster, consistent with CDC recommendations, practice nonpharmaceutical interventions, and, if infected, be monitored closely and considered early for proven therapies that can prevent severe outcomes

    Laboratory-Confirmed COVID-19 Among Adults Hospitalized with COVID-19–Like Illness with Infection-Induced or mRNA Vaccine-Induced SARS-CoV-2 Immunity — Nine States, January–September 2021

    Get PDF
    What is already known about this topic? Previous infection with SARS-CoV-2 or COVID-19 vaccination can provide immunity and protection against subsequent SARS-CoV-2 infection and illness. What is added by this report? Among COVID-19–like illness hospitalizations among adults aged ≥18 years whose previous infection or vaccination occurred 90–179 days earlier, the adjusted odds of laboratory-confirmed COVID-19 among unvaccinated adults with previous SARS-CoV-2 infection were 5.49-fold higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine who had no previous documented infection (95% confidence interval = 2.75–10.99). What are the implications for public health practice? All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2
    corecore