40 research outputs found

    Non-Thermal Radio Frequency and Static Magnetic Fields Increase Rate of Hemoglobin Deoxygenation in a Cell-Free Preparation

    Get PDF
    The growing body of clinical and experimental data regarding electromagnetic field (EMF) bioeffects and their therapeutic applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF) signal, and a static magnetic field (SMF), applied independently, increased the rate of deoxygenation of human hemoglobin (Hb) in a cell-free assay. Deoxygenation of Hb was initiated using the reducing agent dithiothreitol (DTT) in an assay that allowed the time for deoxygenation to be controlled (from several min to several hours) by adjusting the relative concentrations of DTT and Hb. The time course of Hb deoxygenation was observed using visible light spectroscopy. Exposure for 10–30 min to either PRF or SMF increased the rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated enhancement of growth and repair processes could occur

    Emulsion sheet doublets as interface trackers for the OPERA experiment

    Get PDF
    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronically tagged penetrating muons. Further improvement of in-doublet film alignment was obtained by matching the pattern of low-energy electron tracks. The commissioning of the overall OPERA alignment procedure is in progress.Comment: 19 pages, 19 figure

    The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment

    Full text link
    The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode through the study of ΜΌ→Μτ\nu_\mu\to\nu_\tau oscillations. The apparatus consists of an emulsion/lead target complemented by electronic detectors and it is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2007 and 2008 with the detector fully operational with its related facilities for the emulsion handling and analysis. After a brief description of the beam and of the experimental setup we report on the collection, reconstruction and analysis procedures of first samples of neutrino interaction events

    First events from the CNGS neutrino beam detected in the OPERA experiment

    Get PDF
    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode, through the study of nu_mu to nu_tau oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source. In August 2006 a first run with CNGS neutrinos was successfully conducted. A first sample of neutrino events was collected, statistically consistent with the integrated beam intensity. After a brief description of the beam and of the various sub-detectors, we report on the achievement of this milestone, presenting the first data and some analysis results.Comment: Submitted to the New Journal of Physic

    Study of the effects induced by lead on the emulsion films of the OPERA experiment

    Get PDF
    The OPERA neutrino oscillation experiment is based on the use of the Emulsion Cloud Chamber (ECC). In the OPERA ECC, nuclear emulsion films acting as very high precision tracking detectors are interleaved with lead plates providing a massive target for neutrino interactions. We report on studies related to the effects occurring from the contact between emulsion and lead. A low radioactivity lead is required in order to minimize the number of background tracks in emulsions and to achieve the required performance in the reconstruction of neutrino events. It was observed that adding other chemical elements to the lead, in order to improve the mechanical properties, may significantly increase the level of radioactivity on the emulsions. A detailed study was made in order to choose a lead alloy with good mechanical properties and an appropriate packing technique so as to have a low enough effective radioactivity.Comment: 19 pages, 11 figure

    Electricity and magnetism in biology and medicine

    No full text

    Effects of extremely low frequency (ELF) pulsed electromagnetic fields (PEMFs) on immunocompetent cells

    No full text
    The effects of the exposure of mitogen-stimulated human lymphocytes from young and aged subjects to low-frequency pulsed electromagnetic fields (PEMFs) were studied, by measuring cell proliferation, production and utilization of interleukin-2 (IL-2) and the expression of IL-2 receptors. Moreover, data are presented about DNA repair, cell survival and genotoxic effects in cultures exposed to PEMFs. PEMFs increased DNA synthesis, and the effect was more pronunced in the cells from very old subjects. Moreover a higher percentage of IL-2 receptor-positive cells and T-activated lymphocytes was found in the exposed cultures. No effects were found as far as DNA repair and genotoxic effects are concerned

    Magnetic Fields

    No full text
    Le numerose problematiche connesse con i campi magnetici in ambito medico-biologico, ambientale, tecnologico e socio-psicologico sono state affrontate in conferenze, tavole rotonde, performance e una mostra di opere artistiche. Il progetto si \ue8 articolato su due livelli: confronti tra esperti e divulgazione alla cittadinanza

    Effects of the exposure to intermittent 1.8 GHz radio frequency electromagnetic fields on HSP70 expression and MAPK signaling pathways in PC12 cells

    No full text
    Purpose: We previously reported effects on heat shock protein 70 (HSP70) mRNA expression, a cytoprotective protein induced under stressful condition, in human trophoblast cells exposed to amplitude-modulated Global System for Mobile Communication (GSM) signals. In the present work the same experimental conditions were applied to the rat PC12 cells, in order to assess the stress responses mediated by HSP70 and by the Mitogen Activated Protein Kinases (MAPK) in neuronal-like cells, an interesting model to study possible effects of mobile phone frequencies exposure. Materials and methods: HSP70 gene expression level was evaluated by reverse transcriptase polymerase chain reaction, HSP70 protein expression and MAPK phosphorylation were assessed by Western blotting. PC12 cells were exposed for 4, 16 or 24 h to 1.8 GHz continuous wave signal (CW, carrier frequency without modulation) or to two different GSM modulation schemes, GSM-217Hz and GSM-Talk (which generates temporal changes between two different GSM signals, active during talking or listening phases, respectively, thus simulating a typical conversation). Specific adsorption rate (SAR) was 2 W/kg. Results: After PC12 cells exposure to the GSM-217Hz signal for 16 or 24 h, HSP70 transcription significantly increased, whereas no effect was observed in cells exposed to the CW or GSM-Talk signals. HSP70 protein expression and three different MAPK signaling pathways were not affected by the exposure to any of the three different 1.8 GHz signals. Conclusion: The positive effect on HSP70 mRNA expression, observed only in cells exposed to the GSM-217Hz signal, is a repeatable response previously reported in human trophoblast cells and now confirmed in PC12 cells. Further investigations towards a possible role of 1.8 GHz signal modulation are therefore advisable

    A model of bidirectional synaptic plasticity: From signaling network to channel conductance

    No full text
    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of sites on the α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit protein GluR1. Bidirectional synaptic plasticity can be induced by different frequencies of presynaptic stimulation, but there is considerable evidence indicating that the key variable is calcium influx through postsynaptic N-methyl-d-aspartate (NMDA) receptors. Here, we present a biophysical model of bidirectional synaptic plasticity based on [Ca(2+)]-dependent phospho/dephosphorylation of the GluR1 subunit of the AMPA receptor. The primary assumption of the model, for which there is wide experimental support, is that the postsynaptic calcium concentration, and consequent activation of calcium-dependent protein kinases and phosphatases, is the trigger for phosphorylation/dephosphorylation at GluR1 and consequent induction of LTP/LTD. We explore several different mathematical approaches, all of them based on mass-action assumptions. First, we use a first order approach, in which transition rates are functions of an activator, in this case calcium. Second, we adopt the Michaelis-Menten approach with different assumptions about the signal transduction cascades, ranging from abstract to more detailed and biologically plausible models. Despite the different assumptions made in each model, in each case, LTD is induced by a moderate increase in postsynaptic calcium and LTP is induced by high Ca(2+) concentration
    corecore