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Abstract

The growing body of clinical and experimental data regarding electromagnetic field (EMF) bioeffects and their therapeutic
applications has contributed to a better understanding of the underlying mechanisms of action. This study reports that two
EMF modalities currently in clinical use, a pulse-modulated radiofrequency (PRF) signal, and a static magnetic field (SMF),
applied independently, increased the rate of deoxygenation of human hemoglobin (Hb) in a cell-free assay. Deoxygenation
of Hb was initiated using the reducing agent dithiothreitol (DTT) in an assay that allowed the time for deoxygenation to be
controlled (from several min to several hours) by adjusting the relative concentrations of DTT and Hb. The time course of Hb
deoxygenation was observed using visible light spectroscopy. Exposure for 10–30 min to either PRF or SMF increased the
rate of deoxygenation occurring several min to several hours after the end of EMF exposure. The sensitivity and biochemical
simplicity of the assay developed here suggest a new research tool that may help to further the understanding of basic
biophysical EMF transduction mechanisms. If the results of this study were to be shown to occur at the cellular and tissue
level, EMF-enhanced oxygen availability would be one of the mechanisms by which clinically relevant EMF-mediated
enhancement of growth and repair processes could occur.
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Introduction

Identification of some of the mechanisms underlying EMF

bioeffects and their clinical applications [1] has contributed to the

development and more widespread use of more effective

therapeutic signals [2]. It is clear that EMF modulation of nitric

oxide signalling plays an important role in EMF therapeutics [2–

6]. However, there may be other transduction pathways through

which EMF signals could modulate tissue repair and growth. For

example, several recent studies have reported EMF effects on

human Hb in solution and erythrocyte suspensions, including

decreases in viscosity [7] and changes in impedance [8], dielectric

properties [9], dia- and para-magnetic properties [10], optical

absorption [11] and in vivo deoxygenation [12]. In addition,

radiofrequency mobile telephone signals have been shown to

decrease Hb oxygen affinity in vitro [13] and changes in infrared

absorption have been reported for low-frequency EMF [14]. Also,

enhanced oxygen delivery by Hb is under investigation as a

therapeutic strategy for the treatment of pathologies such as

ischemia from stroke, cardiac disease and diabetic ulcers [15].

Thus, the present study aimed to characterize the effects on the

rate of deoxygenation of human hemoglobin (Hb) in an in vitro cell-

free assay of a pulse-modulated radiofrequency (PRF) signal

currently in clinical use for treatment of pain, edema and chronic

wounds [1,2], and, applied independently, of a static magnetic

field (SMF), from permanent ceramic magnets constructed for

therapeutic applications and reported to reduce pain [1]. These

non-thermal EMF modalities were chosen for this study due to

their demonstrated efficacy in a variety of therapeutically relevant

settings [1–6]. The reducing agent dithiothreitol (DTT) was

employed for its ability to facilitate control of the time course of

Hb deoxygenation by adjusting the ratio of DTT/Hb [16]. This

study will show that exposure to PRF and SMF, yielded significant

increases in the rate of Hb deoxygenation in the presence of the
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reducing agent DTT, observable several minutes to several hours

after EMF exposure had ended.

Materials and Methods

Hemoglobin Preparation
Fresh human blood was obtained with written donor consent

and approved for research by the Blood Bank at S.Orsola-

Malpighi Hospital, Bologna according to the rules established by

Legislative Decree 03-03-2005, article 9, paragraph 3, published

in G.U. n. 85, 13.04.2005. Blood samples were also obtained from

one author (DM) in accordance with New York State Consoli-

dated Law, Public Health Article 24-A, Section 2442, without

written approval of the Institutional Review Board of the Albert

Einstein College of Medicine. Blood was drawn in EDTA

anticoagulant tubes, centrifuged at 1000 x g for 10 min and

plasma removed. The packed erythrocytes were then washed in

0.85% sodium chloride solution and centrifuged at 1000 x g for

10 min, 3 times. The packed, washed erythrocytes were then

hemolyzed using distilled water, the resulting solution centrifuged

at 1000 x g for 10 min, and the Hb-containing supernatant

recovered using a Pasteur pipette. Red cell ghosts were sedimented

by additional centrifugation, and the resulting solution containing

2–2.5 mM oxyHb (measured by visible light spectroscopy [17]),

was stored in 1.5 mL aliquots at 280uC until used for each

experiment. Ten mL reaction mixtures were prepared using 100–

120 mM Hb in 50 mM Hepes buffer (pH 7.2, Sigma-Aldrich,

USA), and deoxygenation initiated with 20 mM DTT at

2260.1uC. pH was checked with a digital pH meter (Fisher

AB15 BioBasic, USA) and carefully maintained at 7.2 for all

hemoglobin samples used in this experiment. Immediately upon

addition of DTT, the 10 mL reaction mixture volume was divided

into 1 mL aliquots in sealed 1.5 mL microfuge tubes. No attempt

was made to alter the gaseous environment within the tubes.

EMF Exposure
All hemoglobin samples were exposed to the ambient magnetic

field, which was measured using a digital Gauss/Tesla meter

(model 7010, F.W. Bell, USA) to be 40.562 mT, 59 degrees from

horizontal (vertical component = 34.762 mT, horizontal compo-

nent = 21.062 mT). The PRF signal is approved by the US FDA

for post-operative pain and edema. The signal consisted of a

27.12 MHz sinusoidal carrier (derived from the carrier frequency

reserved and cleared worldwide for short wave diathermy)

configured to operate nonthermally through pulse modulation in

4 ms bursts, repeating at 5 Hz and peak magnetic field amplitude

of 1061 mT (Roma3, Ivivi Health Sciences, San Francisco, CA,

USA). These pulse modulation parameters were chosen on the

bases of theoretical modelling and published reports of bioeffects

at the cellular level, and healing at the animal and clinical levels

[1–3,18–24]. The PRF signal was delivered with a 20 cm circular

single-turn antenna (coil) oriented vertically, creating a

1061065 cm region of field homogeneity in the central area of

the plane of the coil within which a plastic carrier held five upright

1.5 mL microfuge tubes, each containing 1 mL reaction volume.

Each Hb sample was contained in a cylindrical volume of 2.5 cm

in height and 0.8 cm diameter. For this target size, using Faraday’s

Law of Induction, the mean peak induced electric field is 361 V/

m. PRF field parameters were assessed and verified for each

experiment using a National Institute of Standards and Testing

traceable electrostatically shielded loop probe 1 cm in diameter

(model 100A, Beehive Electronics, Sebastopol, CA, USA)

connected to a calibrated 100-MHz oscilloscope (model 2012B,

Tektronix, Beaverton, OR, USA). The output of the loop probe

was calibrated at 27.12 MHz by measurement of output power

using a spectrum analyser (model 8567A, Hewlett Packard, New

York, NY, USA) and the probe calibration factor for conversion to

magnetic field amplitude at 27.12 MHz was certified and given by

the manufacturer. SMF exposure was delivered using circular

permanent ceramic magnets of 3.8 cm diameter and 1.3 cm

thickness, constructed for therapeutic applications (Magnetherapy,

West Palm Beach, FL, USA), and composed of compacted and

sintered strontium ferrite (SrO-6(Fe2O3)), encased in plastic. These

magnets are axially magnetized to have a single north (N) and a

single south (S) pole on each circular face, and manufactured to

produce highly uniform field strength across each face. For all

experiments, magnets were arranged with circular faces oriented

vertically with 1.1 cm gaps between the parallel surfaces. In order

to simultaneously expose five 1.5 mL microfuge tubes, two

1.1 cm-wide treatment regions were formed using a central

magnet flanked by pairs of magnets on either side. This

(NS)(NS)-gap-(NS)-gap-(NS)(NS) configuration produced two cy-

lindrical treatment regions of 1.1 cm width and 3.3 cm in

diameter with uniform magnetic field (to63%), in which the Hb

samples were exposed. Within each treatment region the

horizontal component of the magnetic field (perpendicular to the

magnet surface) was 18666 mT, a field strength similar to those

commonly employed in therapeutic applications [25]. The

maximal value of the horizontal and vertical components (both

parallel to the magnet surface) was 4.060.6 mT. SMF compo-

nents were measured using a digital magnetometer (Model 450,

gaussmeter with MMT-6J02-VG transverse Hall effect probe with

1 mm resolution, Lake Shore Cryotronics, Westerville, OH, USA).

For each experiment, five 1.5 mL microfuge tubes containing the

hemoglobin preparation were exposed to PRF or SMF for 10–

30 min, and 5 tubes were simultaneously exposed to ambient

geomagnetic conditions (control) on the laboratory bench,

approximately 3 meters away from exposed samples. At this

distance contributions from either PRF or SMF to the control

condition were undetectable. Temperature variations between

exposed and control samples were less than60.1uC [Fisher AB15

BioBasic, Waltham, MA, USA].

Spectrophotometric Analysis
After control and EMF exposure, triplicate 300 mL samples

were taken from each 1.5 mL microfuge sample tube, pipetted

into an open 96-well flat-bottom plate (Fisher Scientific, USA) and

the concentrations of oxy, deoxy and metHb were measured

spectrophotometrically (SpectraMax 190, Molecular Devices,

Sunnyvale, CA, USA). The plate remained in the spectropho-

tometer at 22uC during the reaction, and the time course of

deoxygenation was determined using the method of Benesch et al.

[17], which employs a weighted linear combination of optical

densities at 560, 576 and 630 nm to determine oxyHb, deoxyHb

and metHb concentrations. Stock Hb solutions (in Hepes, pH 7.2)

and spectra from Hb/DTT data at t = 0 (i.e. after 30 min EMF/

Control exposures) were assayed for oxy, deoxy and metHb at

560, 576 and 630 nm [17]. The mean ratio of deoxy/oxy for Hb

stock solutions was 3.9%60.8%. For the Hb/DTT data at t = 0,

the mean deox/oxy was 3.3%60.6%. The two datasets do not

differ significantly (P = 0.44, n = 5). The mean ratio of metHb/

oxyHb was 21.8%63.8% for stock solutions and 25.6%63.7% for

Hb/DTT data at t = 0, indicating no significant differences

(P = 0.33, n = 5). Optical densities at 540, 560, 576 and 630 nm

were measured immediately after EMF exposure and at successive

1 to 30 min intervals, until maximal deoxygenation was observed.

Calibration studies confirmed that the kinetics of deoxygenation

could be controlled by adjusting the ratio of DTT/Hb concen-

Electromagnetic Fields on Hemoglobin Deoxygenation
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trations [16]. Under the conditions stated above, deoxygenation

occurred between 140 and 160 min after EMF exposure.

Deoxygenation time was reduced by the addition of 5 M of urea

to between 60–85 min after EMF exposure. In the absence of

DTT, no significant deoxygenation of Hb occurred up to 3 hours

(data not shown). Changes in oxyHB concentration with time are

summarized in the figures, and maximal differences between

deoxy and metHb for EMF exposures vs controls are reported in

the text. All figures and data shown are the results of single

experiments that have been repeated 2–10 times.

Statistical Analysis
Results were compared using the Student’s t test, or one-way

repeated measures ANOVA with Holm-Sidak post hoc analysis, and

Fieller’s method for the variance of ratios, as required (Sigmastat

3.0, Systat, Chicago, IL) and are reported as means6SEM.

Significance was accepted at P#0.05.

Results

Immediately after 30 min of PRF or SMF exposure, no

differences in Hb visible light spectra between PRF, SMF and

control (ambient magnetic field only) samples were detected.

However, changes in visible light spectra were observed in the

540–630 nm region during the time of most rapid deoxygenation,

which occurred in this experiment at 140–160 min after EMF

exposure. Figure 1 illustrates typical visible light spectra for PRF,

SMF and control exposure conditions, drawn from a single

exposure tube for each EMF condition. Deoxygenation occurred

at an earlier time following PRF and SMF exposures (traces with

one peak), as compared to control samples exposed only to the

ambient geomagnetic laboratory environment (trace with two

peaks). In trials employing PRF exposure (n = 5 tubes for each

EMF exposure condition) using 20 mM DTT, 150 min after a

single 30 min exposure, PRF-treated samples exhibited a

30.8610.3% reduction in oxyHb as compared to controls

(14.661.3 mM vs. 21.162.5 mM, P,0.03) (Figure 2). Concomi-

tant, significant increases in deoxy Hb (86.961.1 mM vs.

82.861.8 mM, P,0.05) and metHb (42.261.4 mM vs.

37.161.4 mM, P,0.02) also occurred. For the ratio of DTT/

oxyHb concentrations employed in these trials (20 mM DTT;

120 mM oxyHb), 150 min corresponded to the time of most rapid

deoxygenation. Addition of 5 M urea to the reagent solution

decreased the time to required deoxygenate to approximately 65–

75 min after reaction initiation. For these conditions, the maximal

difference between PRF-treated and control samples occurred at

73 min, with PRF-treated samples showing a 70.569.7% reduc-

tion in oxyHb as compared to controls (8.562.1 mM vs.

28.866.3 mM, P,0.03) (Figure 3). Concomitantly, there were

significant increases in deoxy Hb (54.462.2 mM vs. 40.965.2 mM,

P,0.04) and metHb (73.461.4 mM vs. 61.062.3 mM, P,0.02).

Under similar conditions (30 mM DTT, 5 M urea, n = 5) SMF

treated samples (10–30 min exposure) underwent nearly complete

deoxygenation before the untreated (control) samples began to

deoxygenate (P,0.002 for 42 min,t,58 min). For these SMF

treated samples, the most rapid deoxygenation occurred approx-

imately 10 min earlier than for control samples (Figure 4). Under

these conditions, SMF-treated samples substantially completed

DTT-induced deoxygenation before untreated samples began to

lose O2, an effect that was visibly observable in the 96-well

spectrophotometer plate, as shown in the photo in Figure 5, taken

approximately 46 min after the reaction was initiated. Experi-

ments were also carried out for which: 1) Hb was treated with PRF

or SMF for 30 min prior to introduction into the deoxygenation

solution (20 mM DTT+5M urea in 50 mM Hepes) and 2) the

deoxygenation solution was treated with PRF or SMF for 30 min

prior to introduction of Hb. In both cases the difference between

PRF- or SMF-treated and control samples was not significant.

Also, 10 min and 30 min PRF and SMF treatment durations were

compared (in 20 mM DTT+5M urea in 50 mM Hepes), with no

significant differences observed in the time course of deoxygen-

ation. In the absence of DTT, no PRF or SMF effects were

observed on the Hb oxidation state. The SMF sensitivity of this

Hb deoxygenation assay was repeated at the University of

Bologna, Italy. Initial experiments were performed in New York

with Hb from a single donor, and subsequent trials in Bologna

used Hb from 3 different donors, with similar results.

Discussion and Conclusions

The results from this study indicate that exposure to either PRF

or SMF, applied independently, can alter the rate of DTT-induced

deoxygenation of human Hb in an in vitro cell-free preparation,

resulting in more rapid Hb deoxygenation. To the authors’

knowledge, this is the first report showing that PRF and SMF

produced similar effects in the same biological system, in the same

study. The rate of Hb deoxygenation is non-linear in time and is

dependent upon the ratio of DTT/HbO2. For this assay, the use

of DTT as a reducing agent is preferable to other reducing agents,

due to the ease with which the time to deoxygenation can be

controlled [16]. It is interesting to note that a similar EMF

sensitivity, for Hb exposed to a GSM mobile phone signal, was

observed using sodium dithionite [13]. This suggests that EMF

acted upon a functional aspect of the Hb deoxygenation process

itself, and that this effect was not specific to the reducing agent

employed in this study. The observation that EMF pre-treatment

of Hb alone, or of the deoxygenation solution itself, failed to yield

a significant effect suggests that both PRF and SMF exposures

acted upon the interaction of Hb with the deoxygenating solution.

The addition of 5 M urea reduced the time to deoxygenate and

rendered both the PRF and SMF effects more easily observable.

Urea creates an extended cloud of waters that only weakly

participates in the hydrogen bonding network of bulk water,

facilitating the loosening of the protein structure [26] and

destabilizing the water-oxyHb structures that act as key allosteric

mediators of the Hb T-R transition [27], thus reducing the energy

required to deoxygenate. However, it is unclear whether the

addition of urea affected the primary PRF or SMF transduction or

merely renders the EMF effects more easily observable. No

differences were observed between 10 and 30 min SMF and PRF

treatment durations. Effects were observable several min to several

hours after PRF or SMF exposure was removed, suggesting that

these EMF modalities modified protein/solvation structure in a

manner that altered the energy required for deoxygenation.

This study does not provide sufficient detail to allow for the

elucidation of the mechanisms of action of EMFs on hemoglobin,

or to determine if SMF and PRF act upon the same submolecular

targets to produce the effects observed here. Also, further studies

are required to determine the range of field parameters for which

this assay exhibits sensitivity. However, the sensitivity and

biochemical simplicity of the assay developed here suggests its

usefulness for future studies that may further establish basic

biophysical EMF transduction mechanisms. The PRF signal was

developed using a theoretical model for the effect of the induced

electric field on ion binding kinetics at protein aqueous interfaces

[1–3,18]. It should be noted that PRF transduction through the

induced electric field is distinct from the transduction pathway

involved in SMF effects, for which no electric field is present. This

Electromagnetic Fields on Hemoglobin Deoxygenation
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Figure 1. EMF effect on hemoglobin (Hb) visible light spectra. Spectra representative of the effects of pulsed radiofrequency (PRF) signal and
186 mT static magnetic field (SMF) on Hb visible light spectra during bHb)deoxygenation. Data shown are typical of samples drawn from a single
tube for each EMF exposure condition, shown here at 150 min after a single 30 min EMF exposure. Deoxygenation of 100 mM Hb was carried out in
50 mM Hepes buffer (pH 7.2) using the reducing agent dithiothreitol (20 mM) at 22uC, and is characterized here by the passage of the spectrum from
a two-peaked to one-peaked form. Deoxygenation occured at an earlier time for EMF exposed samples (traces with one peak), as compared to
control samples exposed only to the ambient geomagnetic laboratory environment (trace with two peaks). The EMF effect was observable at the
time of most rapid deoxygenation.
doi:10.1371/journal.pone.0061752.g001

Figure 2. Effect of the pulsed radiofrequency field on time course of hemoglobin deoxygenation. Time course of oxy hemoglobin
(HbO2) concentration, after a single 30 min pulsed radiofrequency electromagnetic field (PRF) exposure of Hb, under deoxygenating conditions.
Concentration was determined by visible light spectroscopy at 560, 576, 630 nm. PRF exposure resulted in a significant (30.8610.3)% reduction in
oxyHb concentration, as compared to controls (14.661.3 mM vs. 21.162.5 mM, P,0.03, n = 5), suggesting an alteration in Hb solution properties that
persisted after PRF signal was removed.
doi:10.1371/journal.pone.0061752.g002
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Figure 3. Addition of 5 M urea to reaction mixture. Addition of 5 M urea to the deoxygenation assay reduces the time required for
deoxygenation and render the PRF effect more apparent. The maximal difference between PRF-treated and control samples occurred at 73 min, with
PRF-treated samples showing a significant (70.469.7)% reduction in oxyHb concentration, as compared to controls (8.562.1 mM vs. 28.866.3 mM,
P,0.03, n = 5), in contrast to the 30.8% reduction observed in the absence of urea (cf. Figure 2).
doi:10.1371/journal.pone.0061752.g003

Figure 4. Effect of the static magnetic field on time course of hemoglobin deoxygenation. Hb deoxygenation after 10 min exposure to
186 mT static magnetic field (SMF) in 5M urea. No significant change in oxy/deoxy ratio was visible until the time of rapid deoxygenation, at
approximately 40 min. The time of most rapid deoxygenation occurred approximately 10 min earlier for SMF treated samples (P,0.002 for
42 min,t,58 min, n = 5).
doi:10.1371/journal.pone.0061752.g004
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suggests that more than one mechanism may be responsible for the

results reported here. Although direct action on ferrous heme [28]

or free radical lifetimes [29,30] may account for the SMF effects

observed here, several other models have been proposed for weak,

mT-range magnetic field bioeffects [31]. We have previously

shown using the Lorentz-Langevin model that mT-range magnetic

fields may have an effect on the thermally activated orientation of

ionic oscillators and waters bound at the protein surface [32,33]

and that the minimum magnetic field required to directly compete

with thermal forces to affect dissociation of a bound ion or ligand

from a protein binding site is in the 1–10 mT-range [34]. Thus,

the effect of the mT-range magnetic field employed in this study

could occur by the direct action of the Lorentz force on charges

bound at the protein/water interface. Functionally important

hemoprotein molecular motions are slaved to the thermal

fluctuations of the bulk solvent [35] and protein hydration plays

a fundamental role in the stability of dynamics between Hb T-R

conformations [36] so that the PRF and SMF interactions

described above, acting at the protein/water interface, may

suggest a means by which EMF could modulate protein function.

The deoxygenating conditions employed here, using the

reducing agent DTT in an in vitro cell-free model, differ

substantially from those found in vivo. However, EMF-induced

changes in the structure and function of Hb and erythrocyte

suspensions shown by others [7–12,14] have been reported in vivo

and in aqueous solution (i.e. without chemical deoxygenating

agents), thus demonstrating an EMF sensitivity under physiolog-

ical conditions and in the absence of reducing agents. Enhanced

delivery of oxygen has been shown to reduce inflammation [37]

and enhance tissue repair [38] and at least one trial has reported

an EMF-induced increase in deoxyHb in an in vivo animal model

[12]. Allosteric modification of Hb has been suggested as a

clinically useful means of enhancing oxygen delivery [39], and is in

development for in vivo treatment of ischemia from stroke, cardiac

disease and diabetic ulcers [15]. Although much further work is

required to ascertain the clinical relevance of the results reported

here, enhanced oxygen delivery using PRF or SMF may be

important non-invasive, non-pharmacologic therapeutic modali-

ties by which clinically relevant EMF-mediated enhancement of

growth and repair processes can occur.
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