104 research outputs found

    Semiaromatic polyamides with enhanced charge carrier mobility

    Get PDF
    The control of local order in polymer semiconductors using non-covalent interactions may be used to engineer materials with interesting combinations of mechanical and optoelectronic properties. To investigate the possibility of preparing n-type polymer semiconductors in which hydrogen bonding plays an important role in structural order and stability, we have used solution-phase polycondensation to incorporate dicyanoperylene bisimide repeat units into an aliphatic polyamide chain backbone. The morphology and thermomechanical characteristics of the resulting polyamides, in which the aliphatic spacer length was varied systematically, were comparable with those of existing semiaromatic engineering polyamides. At the same time, the charge carrier mobility as determined by pulse-radiolysis time-resolved microwave conductivity measurements was found to be about 10-2 cm2 V-1 s-1, which is similar to that reported for low molecular weight perylene bisimides. Our results hence demonstrate that it is possible to use hydrogen bonding interactions as a means to introduce promising optoelectronic properties into high-performance engineering polymers.Peer ReviewedPostprint (author's final draft

    Overcoming the Exciton Binding Energy in Two-Dimensional Perovskite Nanoplatelets by Attachment of Conjugated Organic Chromophores

    Get PDF
    In this work we demonstrate a novel approach to achieve efficient charge separation in dimensionally and dielectrically confined two-dimensional perovskite materials. Two-dimensional perovskites generally exhibit large exciton binding energies that limit their application in optoelectronic devices that require charge separation such as solar cells, photo-detectors and in photo-catalysis. Here, we show that by incorporating a strongly electron accepting moiety, perylene diimide organic chromophores, on the surface of the two-dimensional perovskite nanoplatelets it is possible to achieve efficient formation of mobile free charge carriers. These free charge carriers are generated with ten times higher yield and lifetimes of tens of microseconds, which is two orders of magnitude longer than without the peryline diimide acceptor. This opens a novel synergistic approach, where the inorganic perovskite layers are combined with functional organic chromophores in the same material to tune the properties for specific applications. Functionalizing two-dimensional (2D) hybrid perovskites with organic chromophores is a novel approach to tune their optoelectronic properties. Here, the authors report efficient charge separation and conduction in 2D hybrid perovskite nanoplatelets by incorporating an electron acceptor chromophoreThis work has received funding from the European Research Council Horizon 2020 ERC Grant Agreement No. 648433

    Mechanochemical Synthesis of Sn(II) and Sn(IV) Iodide Perovskites and Study of Their Structural, Chemical, Thermal, Optical and Electrical Properties

    Get PDF
    Phase‐pure CsSnI3, FASnI3, Cs(PbSn)I3, FA(PbSn)I3 perovskites (FA = formamidinium = HC(NH2)2+) as well as the analogous so‐called vacancy‐ordered double perovskites Cs2SnI6 and FA2SnI6 are mechanochemically synthesized. The addition of SnF2 is found to be crucial for the synthesis of Cs‐containing perovskites but unnecessary for hybrid ones. All compounds show an absorption onset in the near‐infrared (NIR) region, which makes them especially relevant for photovoltaic applications. The addition of Pb(II) and SnF2 is crucial to improve the electronic properties in 3D Sn(II)‐based perovskites, in particular their charge carriers mobility (≈0.2 cm2 Vs−1) which is enhanced upon reduction of the dark carrier conductivity. Stokes‐shifted photoluminescence is observed on dry powders of Sn(II)‐based perovskites, which makes these materials promising for light‐emitting and sensing applications. Thermal stability of all compounds is examined, revealing no significant degradation up to at least 200 °C. This meets the requirements for standard operation conditions of most optoelectronic devices and is potentially compatible with thermal vacuum deposition of polycrystalline thin films

    Perovskite Solar Cells: Stable under Space Conditions

    Get PDF
    Metal halide perovskite solar cells (PSCs) are of interest for high altitude and space applications due to their lightweight and versatile form factor. However, their resilience toward the particle spectrum encountered in space is still of concern. For space cells, the effect of these particles is condensed into an equivalent 1 MeV electron fluence. The effect of high doses of 1 MeV e-beam radiation up to an accumulated fluence to 10^16 e-cm-2 on methylammonium lead iodide perovskite thin films and solar cells is probed. By using substrate and encapsulation materials that are stable under the high energy e-beam radiation, its net effect on the perovskite film and solar cells can be studied. The quartz substrate-based PSCs are stable under the high doses of 1 MeV e-beam irradiation. Time-resolved microwave conductivity analysis on pristine and irradiated films indicates that there is a small reduction in the charge carrier diffusion length upon irradiation. Nevertheless, this diffusion length remains larger than the perovskite film thickness used in the solar cells, even for the highest accumulated fluence of 10^16 e-cm-2. This demonstrates that PSCs are promising candidates for space applications

    2D layered perovskite containing functionalised benzothieno-benzothiophene molecules : formation, degradation, optical properties and photoconductivity

    Get PDF
    2D layered hybrid perovskites are currently in the spotlight for applications such as solar cells, light-emitting diodes, transistors and photodetectors. The structural freedom of 2D layered perovskites allows for the incorporation of organic cations that can potentially possess properties contributing to the performance of the hybrid as a whole. In this study, we incorporated a benzothieno[3,2-b]benzothiophene (BTBT) alkylammonium cation into the organic layer of a 2D layered lead iodide perovskite. The formation and degradation of this material are discussed in detail. It is shown that the use of a solvent vapour annealing method significantly enhances the absorption, emission and crystallinity of films of this 2D layered perovskite as compared to regular thermal annealing. The photoconductivity of the films was determined using time-resolved microwave conductivity (TRMC) as well as in a device. In both cases, the solvent vapour annealed films show markedly higher photoconductivity than the films obtained using the regular thermal annealing approach

    Charge and exciton transport through molecular wires

    No full text
    As functional elements in opto-electronic devices approach the singlemolecule limit, conducting organic molecular wires are the appropriateinterconnects that enable transport of charges and charge-like particles such as excitons within the device. Reproducible syntheses and athorough understanding of the underlying principles are therefore indispensable for applications like even smaller transistors, molecularmachines and light-harvesting materials. Bringing together experiment and theory to enable applications in real-life devices, this handbookand ready reference provides es
    • 

    corecore