2,267 research outputs found

    Multijunction cells for concentrators: Technology prospects

    Get PDF
    Development of high-efficiency multijunction solar cells for concentrator applications is a key step in achieving the goals of the U.S. Department of Energy National Photovoltaics Program. This report summarizes findings of an issue study conducted by the Jet Propulsion Laboratory Photovoltaic Analysis and Integration Center, with the assistance of the Solar Energy Research Institute and Sandia National laboratoies, which surveyed multijunction cell research for concentrators undertaken by federal agencies and by private industry. The team evaluated the potentials of research activities sponsored by DOE and by corporate funding to achieve projected high-efficiency goals and developed summary statements regarding industry expectations. Recommendations are made for the direction of future work to address specific unresolved aspects of multijunction cell technology

    Silicon-sheet and thin-film cell and module technology potential: Issue study

    Get PDF
    The development of high-efficiency low-cost crystalline silicon ribbon and thih-film solar cells for the energy national photovoltaics program was examined. The findings of an issue study conducted are presented. The collected data identified the status of the technology, future research needs, and problems experienced. The potentials of present research activities to meet the Federal/industry long-term technical goal of achieving 15 cents per kilowatt-hour levelized PV energy cost are assessed. Recommendations for future research needs related to crystalline silicon ribbon and thin-film technologies for flat-plate collectors are also included

    Where two fractals meet: the scaling of a self-avoiding walk on a percolation cluster

    Full text link
    The scaling properties of self-avoiding walks on a d-dimensional diluted lattice at the percolation threshold are analyzed by a field-theoretical renormalization group approach. To this end we reconsider the model of Y. Meir and A. B. Harris (Phys. Rev. Lett. 63:2819 (1989)) and argue that via renormalization its multifractal properties are directly accessible. While the former first order perturbation did not agree with the results of other methods, we find that the asymptotic behavior of a self-avoiding walk on the percolation cluster is governed by the exponent nu_p=1/2 + epsilon/42 + 110epsilon^2/21^3, epsilon=6-d. This analytic result gives an accurate numeric description of the available MC and exact enumeration data in a wide range of dimensions 2<=d<=6.Comment: 4 pages, 2 figure

    Entropy-induced separation of star polymers in porous media

    Full text link
    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of ff-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)rag(r) \sim r^{-a}. Applying the field-theoretical renormalization group approach we show in a double expansion in ϵ=4d\epsilon=4-d and δ=4a\delta=4-a that there is a range of correlation strengths δ\delta for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3d=3 and different values of the correlation parameter aa the corresponding scaling exponents γf\gamma_f that govern entropic effects. We find that γf1\gamma_f-1, the deviation of γf\gamma_f from its mean field value is amplified by the disorder once we increase δ\delta beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are: star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.Comment: 14 pages, 7 figure

    Longitudinal spin-relaxation in nitrogen-vacancy centers in electron irradiated diamond

    Full text link
    We present systematic measurements of longitudinal relaxation rates (1/T11/T_1) of spin polarization in the ground state of the nitrogen-vacancy (NV^-) color center in synthetic diamond as a function of NV^- concentration and magnetic field BB. NV^- centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV^- center concentrations. Values of (1/T11/T_1) were measured for each spot as a function of BB.Comment: 4 pages, 8 figure

    Star copolymers in porous environments: scaling and its manifestations

    Full text link
    We consider star polymers, consisting of two different polymer species, in a solvent subject to quenched correlated structural obstacles. We assume that the disorder is correlated with a power-law decay of the pair correlation function g(x)\sim x^{-a}. Applying the field-theoretical renormalization group approach in d dimensions, we analyze different scenarios of scaling behavior working to first order of a double \epsilon=4-d, \delta=4-a expansion. We discuss the influence of the correlated disorder on the resulting scaling laws and possible manifestations such as diffusion controlled reactions in the vicinity of absorbing traps placed on polymers as well as the effective short-distance interaction between star copolymers.Comment: 13 pages, 3 figure

    Lower bounds for the first eigenvalue of the magnetic Laplacian

    Full text link
    We consider a Riemannian cylinder endowed with a closed potential 1-form A and study the magnetic Laplacian with magnetic Neumann boundary conditions associated with those data. We establish a sharp lower bound for the first eigenvalue and show that the equality characterizes the situation where the metric is a product. We then look at the case of a planar domain bounded by two closed curves and obtain an explicit lower bound in terms of the geometry of the domain. We finally discuss sharpness of this last estimate.Comment: Replaces in part arXiv:1611.0193
    corecore