85 research outputs found

    Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor

    Get PDF
    BACKGROUND: Echolocating bats emit vocalizations that can be classified either as echolocation calls or communication calls. Neural control of both types of calls must govern the same pool of motoneurons responsible for vocalizations. Electrical microstimulation in the periaqueductal gray matter (PAG) elicits both communication and echolocation calls, whereas stimulation of the paralemniscal area (PLA) induces only echolocation calls. In both the PAG and the PLA, the current thresholds for triggering natural vocalizations do not habituate to stimuli and remain low even for long stimulation periods, indicating that these structures have relative direct access to the final common pathway for vocalization. This study intended to clarify whether echolocation calls and communication calls are controlled differentially below the level of the PAG via separate vocal pathways before converging on the motoneurons used in vocalization. RESULTS: Both structures were probed simultaneously in a single experimental approach. Two stimulation electrodes were chronically implanted within the PAG in order to elicit either echolocation or communication calls. Blockade of the ipsilateral PLA site with iontophoretically application of the glutamate antagonist kynurenic acid did not impede either echolocation or communication calls elicited from the PAG. However, blockade of the contralateral PLA suppresses PAG-elicited echolocation calls but not communication calls. In both cases the blockade was reversible. CONCLUSION: The neural control of echolocation and communication calls seems to be differentially organized below the level of the PAG. The PLA is an essential functional unit for echolocation call control before the descending pathways share again the final common pathway for vocalization

    A MASS PSYCHOLOGICAL PERSPECTIVE ON FINANCIAL MARKETS

    Get PDF
    Numerous research works indicate that the cycle of boom and crisis can be regarded as a natural element in financial market history. On the other hand, there is a rich discussion among practitioners and academics on the origins of the recent global economic and financial crisis, which led the world into the deepest and most severe downturn since the Great Depression in the 1930s. An explanation solely based on the collapse of the U.S. housing bubble and its effects seems far too short-sighted. In addition to economic elucidations and rationalizations, there are also behavioral and socio-economic explanations, which take into account the powerful social and psychological forces at work in financial markets. This article approaches the discussion from a mass psychological perspective. Starting from the shortcomings of mainstream economic approaches in predicting market trends and their underlying trading behavior realistically, the paper elucidates postulated mechanisms behind mass phenomena and provides a concise review of literature on collective dynamics in financial markets. We then delineate previous research on the distinction between mass phenomena and attempt to transfer this theoretical framework to financial markets. Consequently the final section discusses directions for future research to extend the foundations of the theoretical frame of reference

    The impact of tethered recording techniques on activity and sleep patterns in rats

    Get PDF
    Funding Information: The project was supported by grants of Deutsche Forschungsgemeinschaft (FOR 2591, GZ: PO681/9-1 and 9-2). The authors thank Sarah Glisic, Helen Stirling, Claudia Siegl, Sieglinde Fischlein, Andreas Kutschka and Isabella Waclawczyk for their excellent technical assistance. The authors thank Helen Stirling for language revision. Open Access funding enabled and organized by Projekt DEALPeer reviewedPublisher PD

    Severe Plasmodium knowlesi infection with multi-organ failure imported to Germany from Thailand/Myanmar

    Get PDF
    During the last two decades human infections with Plasmodium knowlesi are increasingly diagnosed in South East Asia and have also been reported in travellers. A severe case of imported P. knowlesi infection in a 73-year old German is presented, who had been travelling through Myanmar and Thailand for three weeks. Microscopy showed a parasitaemia of 3% and different parasite stages including band-forms resembling Plasmodium malariae. Due to the clinical picture of severe malaria and the microscopical aspect (combination of parasites resembling P. malariae and Plasmodium falciparum), P. knowlesi was suspected. The patient was treated with intravenous quinine; he was put on mechanical ventilation and catecholamines due to cardiorespiratory failure. Parasitaemia was cleared rapidly but renal function deteriorated resulting in intermittent haemodialysis. The patient was hospitalized for six weeks but he recovered completely without any physical sequelae. Plasmodium knowlesi mono-infection was confirmed by molecular methods later on. Plasmodium knowlesi infection has to be taken into account in feverish travellers returning from Thailand/Myanmar. Moreover this species can cause life-threatening or even lethal complications. Accordingly severe P. knowlesi infection should be treated like severe P. falciparum infections

    Severe Plasmodium knowlesi infection with multi-organ failure imported to Germany from Thailand/Myanmar

    Get PDF
    During the last two decades human infections with Plasmodium knowlesi are increasingly diagnosed in South East Asia and have also been reported in travellers. A severe case of imported P. knowlesi infection in a 73-year old German is presented, who had been travelling through Myanmar and Thailand for three weeks. Microscopy showed a parasitaemia of 3% and different parasite stages including band-forms resembling Plasmodium malariae. Due to the clinical picture of severe malaria and the microscopical aspect (combination of parasites resembling P. malariae and Plasmodium falciparum), P. knowlesi was suspected. The patient was treated with intravenous quinine; he was put on mechanical ventilation and catecholamines due to cardiorespiratory failure. Parasitaemia was cleared rapidly but renal function deteriorated resulting in intermittent haemodialysis. The patient was hospitalized for six weeks but he recovered completely without any physical sequelae. Plasmodium knowlesi mono-infection was confirmed by molecular methods later on. Plasmodium knowlesi infection has to be taken into account in feverish travellers returning from Thailand/Myanmar. Moreover this species can cause life-threatening or even lethal complications. Accordingly severe P. knowlesi infection should be treated like severe P. falciparum infections

    Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    Get PDF
    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called 'stress reactivity' (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD

    Sleep disturbances in highly stress reactive mice: Modeling endophenotypes of major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days.</p> <p>Results</p> <p>Differences in the amount of REMS and wakefulness and in the number of transitions between vigilance states were found in HR mice, when compared with IR and LR animals. Increased frequencies of transitions from NREMS to REMS and from REMS to wakefulness in HR animals were robust across the light-dark cycle. Detailed statistical analyses of spectral EEG parameters showed that especially during NREMS the power of the theta (6-9 Hz), alpha (10-15 Hz) and eta (16-22.75 Hz) bands was significantly different between the three breeding lines. Well defined distributions of significant power differences could be assigned to different times during the light and the dark phase. Especially during NREMS, group differences were robust and could be continuously monitored across the light-dark cycle.</p> <p>Conclusions</p> <p>The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.</p

    The khmer software package: enabling efficient nucleotide sequence analysis

    Get PDF
    The khmer package is a freely available software library for working efficiently with fixed length DNA words, or k-mers. khmer provides implementations of a probabilistic k-mer counting data structure, a compressible De Bruijn graph representation, De Bruijn graph partitioning, and digital normalization. khmer is implemented in C++ and Python, and is freely available under the BSD license at https://github.com/dib-lab/khmer/
    corecore