18 research outputs found

    A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows

    Get PDF
    peer-reviewedThe aim of this study was to build and compare predictive models of calving difficulty in dairy heifers and cows for the purpose of decision support and simulation modeling. Models to predict 3 levels of calving difficulty (unassisted, slight assistance, and considerable or veterinary assistance) were created using 4 machine learning techniques: multinomial regression, decision trees, random forests, and neural networks. The data used were sourced from 2,076 calving records in 10 Irish dairy herds. In total, 19.9 and 5.9% of calving events required slight assistance and considerable or veterinary assistance, respectively. Variables related to parity, genetics, BCS, breed, previous calving, and reproductive events and the calf were included in the analysis. Based on a stepwise regression modeling process, the variables included in the models were the dam's direct and maternal calving difficulty predicted transmitting abilities (PTA), BCS at calving, parity; calving assistance or difficulty at the previous calving; proportion of Holstein breed; sire breed; sire direct calving difficulty PTA; twinning; and 2-way interactions between calving BCS and previous calving difficulty and the direct calving difficulty PTA of dam and sire. The models were built using bootstrapping procedures on 70% of the data set. The held-back 30% of the data was used to evaluate the predictive performance of the models in terms of discrimination and calibration. The decision tree and random forest models omitted the effect of twinning and included only subsets of sire breeds. Only multinomial regression and neural networks explicitly included the modeled interactions. Calving BCS, calving difficulty PTA, and previous calving assistance ranked as highly important variables for all 4 models. The area under the receiver operating characteristic curve (ranging from 0.64 to 0.79) indicates that all of the models had good overall discriminatory power. The neural network and multinomial regression models performed best, correctly classifying 75% of calving cases and showing superior calibration, with an average error in predicted probability of 3.7 and 4.5%, respectively. The neural network and multinomial regression models developed are both suitable for use in decision-support and simulation modeling

    A comparison of machine learning techniques for predicting insemination outcome in Irish dairy cows

    Get PDF
    Abstract. Reproductive performance has an important effect on economic efficiency in dairy farms with short yearly periods of breeding. The individual factors affecting the outcome of an artificial insemination have been extensively researched in many univariate models. In this study, these factors are analysed in combination to create a comprehensive multivariate model of conception in Irish dairy cows. Logistic regression, Naïve Bayes, Decision Tree learning and Random Forests are trained using 2,723 artificial insemination records from Irish research farms. An additional 4,205 breeding events from commercial dairy farms are used to evaluate and compare the performance of each data mining technique. The models are assessed in terms of both discrimination and calibration ability. The logistic regression model was found to be the most useful model for predicting insemination outcome. This model is proposed as being appropriate for use in decision support and in general simulation of Irish dairy cows

    A comparison of machine learning techniques for predicting insemination outcome in Irish dairy cows

    Get PDF
    peer-reviewedReproductive performance has an important effect on economic efficiency in dairy farms with short yearly periods of breeding. The individual factors affecting the outcome of an artificial insemination have been extensively researched in many univariate models. In this study, these factors are analysed in combination to create a comprehensive multivariate model of conception in Irish dairy cows. Logistic regression, Naive Bayes, Decision Tree learning and Random Forests are trained using 2,723 artificial insemination records from Irish research farms. An additional 4,205 breeding events from commercial dairy farms are used to evaluate and compare the performance of each data mining technique. The models are assessed in terms of both discrimination and calibration ability. The logistic regression model was found to be the most useful model for predicting insemination outcome. This model is proposed as being appropriate for use in decision support and in general simulation of Irish dairy cows

    Exploring the Benefits for Users of Linked Open Data for Digitized Special Collections, White paper #2: Analysis of Early User Feedback

    Get PDF
    This paper reports on a research study conducted to evaluate experimental, LOD-based features of digital special collections, which investigated the question: how do these features affect the use of digital collections for research? Because humanities researchers are the primary user group for cultural collections, this study focused on what humanities researchers might gain from LOD-based enhancements to digital collections.Andrew W. Mellon Foundation Award No. 31500650Ope

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management

    The creation and evaluation of a model to simulate the probability of conception in seasonal-calving pasture-based dairy heifers

    Get PDF
    Abstract Background Herd fertility in pasture-based dairy farms is a key driver of farm economics. Models for predicting nulliparous reproductive outcomes are rare, but age, genetics, weight, and BCS have been identified as factors influencing heifer conception. The aim of this study was to create a simulation model of heifer conception to service with thorough evaluation. Methods Artificial Insemination service records from two research herds and ten commercial herds were provided to build and evaluate the models. All were managed as spring-calving pasture-based systems. The factors studied were related to age, genetics, and time of service. The data were split into training and testing sets and bootstrapping was used to train the models. Logistic regression (with and without random effects) and generalised additive modelling were selected as the model-building techniques. Two types of evaluation were used to test the predictive ability of the models: discrimination and calibration. Discrimination, which includes sensitivity, specificity, accuracy and ROC analysis, measures a model’s ability to distinguish between positive and negative outcomes. Calibration measures the accuracy of the predicted probabilities with the Hosmer-Lemeshow goodness-of-fit, calibration plot and calibration error. Results After data cleaning and the removal of services with missing values, 1396 services remained to train the models and 597 were left for testing. Age, breed, genetic predicted transmitting ability for calving interval, month and year were significant in the multivariate models. The regression models also included an interaction between age and month. Year within herd was a random effect in the mixed regression model. Overall prediction accuracy was between 77.1% and 78.9%. All three models had very high sensitivity, but low specificity. The two regression models were very well-calibrated. The mean absolute calibration errors were all below 4%. Conclusion Because the models were not adept at identifying unsuccessful services, they are not suggested for use in predicting the outcome of individual heifer services. Instead, they are useful for the comparison of services with different covariate values or as sub-models in whole-farm simulations. The mixed regression model was identified as the best model for prediction, as the random effects can be ignored and the other variables can be easily obtained or simulated

    The impact of removal of the seasonality formula on the eligibility of Irish herds to supply raw milk for processing of dairy products

    No full text
    Background: The dairy industry in Ireland is expanding rapidly, with a focus on the production of high quality milk. Somatic cell counts (SCC) are an important indicator both of udder health and milk quality. Milk sold by Irish farmers for manufacture must comply with EU regulations. Irish SCC data is also subject to a monthly seasonal adjustment, for four months from November to February, on account of the seasonality of milk production in Ireland. In a recent study, however, there was no evidence of a dilution effect on SCC with increasing milk yield in Irish dairy cattle. The aim of this paper is to estimate the impact of removal of the seasonality formula on the eligibility of Irish herds to supply raw milk for processing of dairy products. Methods: Bulk tank SCC data from 2013 were collected from 14 cooperatives in Ireland. The geometric mean of SCC test results was calculated for each calendar month. We then calculated the number of herds and volume of milk supplied falling in three SCC categories (400,000 cells/mL) in Ireland during 2013 based on their geometric mean SCC every month. Each herd was assigned an ‘eligibility to supply’ status (always compliant, under warning (first warning, second warning, third warning) and liable for suspension) each month based on their 3-month rolling geometric mean, using methods as outlined in EU and Irish legislation. Two methods were used to calculate the 3-month rolling geometric mean. We then determined the number of herds and volume of milk supplied by ‘eligibility to supply’ status in Ireland during 2013. All calculations were conducted with and without the seasonality adjustment. Results: The analyses were performed on 2,124,864 records, including 1,571,363 SCC test results from 16,740 herds. With the seasonality adjustment in place, 860 (5.1%) or 854 (5.1%) of herds should have been liable for suspension during 2013 if calculation method 1 or 2, respectively, had been used. If the seasonality adjustment were removed, it is estimated that the number of herds liable for suspension would increase from 860 to 974 (13.2% increase) using calculation method 1, or from 854 to 964 (12.9% increase) using calculation method 2. Conclusions: The modelled impact of such removal would be relatively minor, based on available data, regardless of the method used to calculate the 3-month rolling geometric mean. The focus of the current study was quite narrow, effectively from July to December 2013. Therefore, the results are an underestimate of the total number of herds liable for suspension during 2013. They may also underestimate the true percentage change in herds liable for suspension, with the removal of the seasonality formula. A national herd identifier was lacking from a sizeable percentage of the 2013 bulk tank SCC data, but will be needed if these data are to be meaningfully used for this or other purposes.Animal Health Irelan

    A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows

    No full text
    The aim of this study was to build and compare predictive models of calving difficulty in dairy heifers and cows for the purpose of decision support and simulation modeling. Models to predict 3 levels of calving difficulty (unassisted, slight assistance, and considerable or veterinary assistance) were created using 4 machine learning techniques: multinomial regression, decision trees, random forests, and neural networks. The data used were sourced from 2,076 calving records in 10 Irish dairy herds. In total, 19.9 and 5.9% of calving events required slight assistance and considerable or veterinary assistance, respectively. Variables related to parity, genetics, BCS, breed, previous calving, and reproductive events and the calf were included in the analysis. Based on a stepwise regression modeling process, the variables included in the models were the dam\u27s direct and maternal calving difficulty predicted transmitting abilities (PTA), BCS at calving, parity; calving assistance or difficulty at the previous calving; proportion of Holstein breed; sire breed; sire direct calving difficulty PTA; twinning; and 2-way interactions between calving BCS and previous calving difficulty and the direct calving difficulty PTA of dam and sire. The models were built using bootstrapping procedures on 70% of the data set. The held-back 30% of the data was used to evaluate the predictive performance of the models in terms of discrimination and calibration. The decision tree and random forest models omitted the effect of twinning and included only subsets of sire breeds. Only multinomial regression and neural networks explicitly included the modeled interactions. Calving BCS, calving difficulty PTA, and previous calving assistance ranked as highly important variables for all 4 models. The area under the receiver operating characteristic curve (ranging from 0.64 to 0.79) indicates that all of the models had good overall discriminatory power. The neural network and multinomial regression models performed best, correctly classifying 75% of calving cases and showing superior calibration, with an average error in predicted probability of 3.7 and 4.5%, respectively. The neural network and multinomial regression models developed are both suitable for use in decision-support and simulation modeling

    Additional file 3: Figure S2. of The impact of removal of the seasonality formula on the eligibility of Irish herds to supply raw milk for processing of dairy products

    No full text
    The relative monthly change in the percentage of national volume under warning and liable for suspension following removal of the seasonality adjustment, using calculation method 1. (PDF 5 kb
    corecore