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Abstract. Reproductive performance has an important effect on eco-
nomic efficiency in dairy farms with short yearly periods of breeding.
The individual factors affecting the outcome of an artificial insemina-
tion have been extensively researched in many univariate models. In this
study, these factors are analysed in combination to create a compre-
hensive multivariate model of conception in Irish dairy cows. Logistic
regression, Näıve Bayes, Decision Tree learning and Random Forests are
trained using 2,723 artificial insemination records from Irish research
farms. An additional 4,205 breeding events from commercial dairy farms
are used to evaluate and compare the performance of each data mining
technique. The models are assessed in terms of both discrimination and
calibration ability. The logistic regression model was found to be the
most useful model for predicting insemination outcome. This model is
proposed as being appropriate for use in decision support and in general
simulation of Irish dairy cows.

1 Introduction

Dairy production systems in Ireland are primarily based on seasonal calving pat-
terns. Reproductive performance in these systems has an important impact on
economic efficiency. In these pasture-based farms, the aim is to align peak grass
availability with peak lactating cow energy demands, by breeding animals during
a set time period. Poor reproductive performance results in extended periods of
calving, suboptimal utilisation of pastures and increased feed costs.

The individual factors affecting conception have been extensively researched.
However, few models have comprehensively examined the factors influencing the
outcome of insemination in combination, particularly at the individual breeding
event level [19]. Most statistical analysis has focused on identifying important
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factors in isolation and analysing overall measures of reproductive performance,
such as calving to conception interval or the probability of conception during a
breeding season [5].

Statistically important factors incorporating both genetic and phenotypic ef-
fects (parity, stage of lactation, calving events, measures of energy balance and
milk production) were identified as significant in previous analyses of records
from Irish herds [2][7]. Binary logistic regression was used to form a predictive
model of conception outcome. In this study, the aim was to identify and apply
other appropriate machine learning techniques to the problem of predicting in-
semination outcome. To allow direct comparison of the models, they were all
built using the same variables as the previous study.

When evaluating binary predictions, two categories of assessment are pos-
sible: discrimination and calibration [21]. Discrimination measures a model’s
ability to correctly classify cases; i.e. the separation between the successful and
unsuccessful outcomes. Evaluations of discrimination depend on a cut-off point
to transform the predicted probabilities into outcomes and ignore the raw predic-
tions. Classification tables show the rate of correct class predictions, separated
by positive and negative instances. These values can be used to calculate pre-
cision and recall [17]. To identify the optimal cut-off point, receiver operating
characteristic (ROC) curves are used to plot the false-positive rate against the
true-positive.

Calibration compares the predictions to the true proportions of events oc-
curring, i.e. determining if the observed frequency of occurrence is similar to the
predicted probability, within groups of records. Reliability measures such as the
Hosmer-Lemeshow test [12] are used to test overall goodness-of-fit. Calibration
plots [4] allow visual inspection of deviation, with statistical tests for analysis of
bias and spread. Analysis of deviances may be used to highlight outlying records
or covariate values.

As breeding outcome may be considered both in terms of the probability
of occurrence and the binary prediction, the models used were compared using
both forms of assessment. Evaluation was carried out on an external dataset of
records from typically managed commercial Irish dairy herds.

2 Methods

2.1 Data

The data available for model training were sourced from the centralised database
at Teagasc’s Animal and Grassland Research and Innovation Centre, Moorepark,
Co. Cork. The animals included in the dataset were from the Curtins and Bal-
lydague spring-calving research herds, both of which emulate typical Irish dairy



management systems. Additional variables were available in this dataset which
were used to find the significant factors in the modelling process. After cleaning,
inference and missing value removal, 2,723 artificial insemination service records
from 658 lactating cows (1,552 lactations) were available for analysis. Service
outcome (i.e. conception or no conception) was recorded as a binary variable
and was confirmed by ultrasound pregnancy diagnosis between 30 and 60 days
post-service or subsequent calving 282 ± 15 days after conception. 47.88% of the
services resulted in conception. The variables analysed were: parity (the number
of times the cow has previously calved); log days in milk (days since last calv-
ing); inter-service interval; the difficulty of the last calving; body condition score
(measure of how fat or thin the cow is), as a second-order polynomial effect due
to its non-linear relationship with conception probability; and genetic traits for
milk production and calving interval.

Observations within the external testing dataset were recorded on 9 com-
mercial dairy farms involved in a herd fertility consultancy program operated
by the School of Veterinary Medicine, University College Dublin (UCD) [20].
4,205 services from 1,471 cows (2,702 lactations) were available for prediction.
The same measurements as in the training set were available. 47.49% of these
services were successful.

Descriptive statistics from both datasets are shown in Table 1. All data ma-
nipulation, analysis and evaluation were carried out using the R statistical pro-
gramming language [18] and R libraries.

Variable
Training data

mean (SD)
Testing data
mean (SD)

Parity 2.48 (1.51) 2.78 (1.74)
Days in milk 91.86 (29.83) 85.60 (28.83)
Calving interval genetic trait -3.32 (2.68) -2.90 (2.47)
Milk genetic trait 82.55 (184.91) 169.33 (153.00)
Body condition score at breeding 2.89 (0.31) 2.86 (0.22)

Table 1: Descriptive statistics of Moorepark and UCD School of Veterinary
Medicine datasets

2.2 Machine Learning Techniques

Four widely-used methods capable of modelling binary values or probabilities
were used to model the outcome of breeding to service.

Logistic Regression. Binary logistic regression [12] (R function glm [18]) is
a generalisation of simple linear regression designed to model the effect of inde-



pendent variables on the probability of the modelled outcome occurring. Logistic
regression assumes all independent variables are normally distributed and not
strongly correlated. Regression analysis allows for interactions between indepen-
dent variables to be included in the model. Random effects can be incorporated
to account for the influence of unmeasurable events or global effects. In this
study, a basic logistic regression model without interactions or random effects
was built to allow for direct comparison with other models. Logistic regression
models predict the probability of the event occurring, which can then be trans-
formed to a binary outcome using a threshold probability.

Näıve Bayes. The implementation of Näıve Bayes used in this study (e1071
library function naiveBayes [16]) also makes the assumption that numeric
features are normally distributed, but assumes no dependencies between them.
If known, a-priori probabilities can be set; in this case, the overall conception rate
was used. The Bayes rule calculates the probability of each potential outcome,
given the a-priori probabilities and the input values. The outcome with the
highest probability is then chosen as the predicted result.

Decision Tree. Tree models are created by recursively splitting the training
dataset into subsets based on the value of an attribute. The next node is chosen
by finding the attribute that can provide the most information when splitting the
set. Cut-off thresholds are generated to discretise numeric variables. Using the
rpart function (from the R library of the same name [22]) results in probabilistic
terminal nodes for binary outcomes.

Random Forest. Random forests (randomForest library function randomForest
[14]) are an ensemble learning method for Decision Trees. It uses both bootstrap-
ping and random feature selection to train a large number of Decision Trees [23].
In this study, random forests with 100, 250 and 500 trees were built.

2.3 Evaluation

Discrimination analysis. For each of the models, the true and predicted ser-
vice outcomes (given a threshold probability of 50%) were tabulated in a con-
fusion matrix. From this, precision, recall and F-measure were calculated. The
Matthews correlation coefficient was also calculated to show the performance of
the models in comparison with a random classifier [15]. It ranges from -1 (com-
pletely inaccurate predictions) to +1 (completely accurate predictions), with 0
indicating the same performance as random prediction.

Receiver operating characteristic (ROC) curves were used to assess how per-
formance varied as the discrimination threshold was altered. The plot presents
the true positive rate against the false positive rate, allowing the optimal prob-
ability or classifier to be interpreted visually or using summary statistics, such
as the area under the curve.



Calibration analysis. Each model was used to predict the probability of con-
ception occurring in each row of the test set, using the predict function with
appropriate arguments.

The Hosmer-Lemeshow test [11] was used to evaluate the overall goodness-of-
fit of the models on the testing data. The test (R function hoslem.test from
the ResourceSelection [13] package) splits the observations (sorted by predicted
probability) into 10 equal-sized groups of risk and compares the observed num-
ber of events to the mean predicted number of events within each group. The
disadvantage of overall goodness-of-fit tests is that they cannot identify more
specific cases of poor prediction [6]. For a thorough investigation of capabilities,
they should be used in conjunction with the more in-depth tests of calibration
described below.

For each set of model predictions, a calibration plot was drawn by group-
ing the observations into 25 equi-interval bins and plotting the mean predicted
probability against the proportion of true events within each group. The data
were split into 25 to allow for acceptable-sized groups while still maintaining low
within-group probability variation. Bins containing fewer than 20 records were
not plotted. Confidence intervals for the proportions of successful inseminations
were calculated using the F distribution (calibration.plot function of the
PresenceAbsence R package [8]).

Binned prediction deviations were visually examined for patterns. 95% of the
binned values should lie within two standard deviations of 0 [9]. The absolute
group deviances were averaged to find the mean absolute calibration error.

3 Results

All of the variables described were significant at P = 0.05 (using the drop1
function on the logistic regression model).

3.1 Discrimination

The ROC curve of each of the models is shown in Figure 1. The confusion matrix
for each model is in Table 2. Discrimination test results (precision, recall, F-score
and Matthews correlation coefficient) are in Table 3. All of the models performed
similarly in these tests, with F-scores ranging from 50.01% to 52.03%. All of the
models performed better than a random classifier in the Matthews correlation
coefficient (range 0.11 to 0.16).

3.2 Calibration

Results of statistical tests carried out to measure calibration and goodness-of-
fit are shown in Table 4. These results can be seen visually in the calibration
(Figure 2) and deviance plots (Figure 3).



Model Conceived
Did not
conceive

Logistic Regression
Predicted True 895 651
Predicted False 1102 1557

Nave Bayes
Predicted True 928 745
Predicted False 1069 1463

Decision Tree
Predicted True 924 774
Predicted False 1073 1434

Random Forest (100 trees)
Predicted True 981 843
Predicted False 1016 1365

Random Forest (250 trees)
Predicted True 988 813
Predicted False 1009 1395

Random Forest (500 trees)
Predicted True 989 830
Predicted False 1008 1378

Table 2: Confusion matrices for each of the models

Model Precision Recall F-score
Matthews

Correlation
Coefficient

Logistic Regression 57.89% 44.82% 50.52% 0.16
Naive Bayes 55.47% 46.47% 50.57% 0.13
Decision Tree 54.42% 46.27% 50.01% 0.11
Random Forest (100 trees) 53.78% 49.12% 51.35% 0.11
Random Forest (250 trees) 54.86% 49.47% 52.03% 0.13
Random Forest (500 trees) 54.37% 49.52% 51.83% 0.12

Table 3: Discrimination statistical tests

Model
Hosmer-Lemeshow

p-value
Mean absolute

calibration error
Deviances within

2 SD

Logistic Regression 0.19 3.48% 100%
Naive Bayes 0.00 4.26% 80%
Decision Tree 1.00 4.66% 94%
Random Forest (100 trees) 0.00 6.40% 63%
Random Forest (250 trees) 0.00 5.96% 64%
Random Forest (500 trees) 0.00 5.99% 68%

Table 4: Calibration statistical tests



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Model Logistic Regression
Naive Bayes

Decision Tree
Random Forest (100 trees)

Random Forest (250 trees)
Random Forest (500 trees)

Fig. 1: ROC curves of the four machine learning models

There were no significant differences found between the true and predicted
logistic regression and Decision Tree outcomes with the Hosmer-Lemeshow test.
The test found significant differences between the true outcomes and the predic-
tions from the Näıve Bayes and all of the Random Forest models.

The models had mean absolute calibration error ranging from 3.48% to
6.40%, with the Random Forest model built with 100 trees having the high-
est rate of calibration error. The Decision Tree just exceeds the accepted limit
of 5% of deviance values outside the two standard deviation limit. The Näıve
Bayes and all of the Random Forest models were well above this limit. Some
evidence of a deviance pattern is seen in the Näıve Bayes deviance plot, while a
very clear pattern is observed for the Random Forest models.

4 Discussion

The logistic regression model had the best calibration performance; its calibra-
tion error was lowest, along with the most compact deviance spread. The model’s
F-score was similar to the other models, but it had the highest precision and
lowest recall. Its Matthews correlation coefficient was the highest of the models.
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(a) Logistic regression
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(b) Näıve Bayes
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(c) Decision Tree
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(d) Random Forest
(100 trees)
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(e) Random Forest
(250 trees)
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(f) Random Forest
(500 trees)

Fig. 2: Calibration plots for the models of dairy cow conception
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(a) Logistic regression
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(b) Näıve Bayes
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(c) Decision Tree
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(d) Random Forest
(100 trees)
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(e) Random Forest
(250 trees)
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(f) Random Forest
(500 trees)

Fig. 3: Deviance plots for the models of dairy cow conception



The Näıve Bayes model failed the Hosmer-Lemeshow test of overall goodness-
of-fit, and the calibration plot showed some points outside the 95% confidence
interval. With 20% of its deviance values outside two standard deviations of
0 and some observation of systematic deviance, it showed poor capability of
predicting the probability of conception. This was in spite of discrimination per-
formance comparable to the rest of the models.

The probabilities predicted from the Decision Tree model had a very nar-
row range; only four distinct probabilities were predicted, resulting in only two
probability groups with enough records to display on the calibration plot. This
also reduced the number of rows used to calculate the Hosmer-Lemeshow test
statistic. Although the discrimination evaluation of the Decision Tree did not
differ greatly from the other models, its poor calibration performance makes it
an unsuitable choice for predicting the outcome of service.

Because the algorithm continues to create trees until every record is correctly
classified, the Random Forests were perfect models of the training data used to
build them. Although these models had the best test performance in terms of
discrimination, their calibration results were poor. The calibration plots show
significant bias, and the distinctly non-random deviance plots indicate that the
models are not capturing some important element related to the outcome [10].

Data that are not well separated along different outcomes will be very com-
mon in epidemiological applications, where probabilities close to 1 or 0 are un-
common and most in-group probabilities tend to be centred close to 50%. The
benefit of modelling these outcomes is to identify events with probabilities out-
side the norm. This can aid the decision making of farmers and their advisors
when selecting the best animals for costly insemination techniques such as sexed
semen [3]. Because the probability is the focus, rather than the ultimate out-
come, a predictive model with good calibration is key. Thus the logistic regression
model is the best model for predicting service outcome. Easily interpretable co-
efficients or odds ratios may be used to inform farmers about the important risk
factors for service outcome.

5 Conclusion

This paper demonstrates a novel application of machine learning algorithms in
the context of Irish agriculture. Each technique was trained using data from
research herds and tested with an external dataset representing the typical com-
mercial dairy herd in Ireland. The methods implemented all show similar dis-
criminative ability, but logistic regression was found to be the most capable at
correctly predicting the probability of conception. Further improvements to the
model might be made using regression with ensemble methods such as bagging



[1].

This is, to the authors’ knowledge, the first time comprehensive statistical
modelling of service outcome in Irish cows has been reported. Having a gener-
alisable predictive model of how various risk factors combine to influence the
probability of conception will aid farmers to better understand the performance
potential of their animals when making management decisions, such as culling
or selection of herd replacements. In addition, the fact that the model is based
on easily recordable and obtainable data should further increase the practical
utility of the model as a decision support tool. As well as the stand-alone ben-
efits of the model, it is being integrated into a detailed whole-farm model of
Irish dairy animals, which will simulate nutrition, reproduction, management
and economics in daily time-steps for the entire life of each animal.
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