113 research outputs found

    Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Get PDF
    For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF) and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy

    Environmental filtering, spatial processes and biotic interactions jointly shape different traits communities of stream macroinvertebrates

    Get PDF
    The metacommunity concept has been widely used to explain the biodiversity patterns at various scales. It considers the influences of both local (e.g., environmental filtering and biotic interactions) and regional processes (e.g., dispersal limitation) in shaping community structures. Compared to environmental filtering and spatial processes, the influence of biotic interactions on biodiversity patterns in streams has received limited attention. We investigated the relative importance of three ecological processes, namely environmental filtering (including local environmental and geo-climatic factors), spatial processes and biotic interactions (represented by interactions of macroinvertebrates and diatom), in shaping different traits of macroinvertebrate communities in subtropical streams, Eastern China. We applied variance partitioning to uncover the pure and shared effects of different ecological processes in explaining community variation. The results showed that environmental filtering, spatial processes, and biotic interactions jointly determined taxonomic and trait compositions of stream macroinvertebrates. Spatial processes showed a stronger influence in shaping stream macroinvertebrate communities than environmental filtering. The contribution of biotic interactions to explain variables was, albeit significant, rather small, which was likely a result of insufficient representation (by diatom traits) of trophic interactions associated with macroinvertebrates. Moreover, the impact of three ecological processes on macroinvertebrate communities depends on different traits, especially in terms of environmental filtering and spatial processes. For example, spatial processes and environmental filtering have the strongest effect on strong dispersal ability groups; spatial processes have a greater effect on scrapers than other functional feeding groups. Overall, our results showed that the integration of metacommunity theory and functional traits provides a valuable framework for understanding the drivers of community structuring in streams, which will facilitate the development of effective bioassessment and management strategies.Peer Reviewe

    SER: An R package to characterize environmental regimes

    Get PDF
    Environmental regimes (or environmental legacy or historical legacy) are the dynamics of environmental characteristics over a given (either long or short) time period, such as frequency of mean or extreme events and rate of change, which might be absent by using only contemporary variables. We present SER, an R package for estimating environmental regimes for different environmental variables. Using the data included in the package, several examples are shown. SER is suitable for any type of environmental or biotic variables, including nutrient concentration, light, and dissolved oxygen. In addition, by changing the argument "days_bf," it is possible to compute environmental regimes over any time period, such as days, months, or years. Our case study showed that the inclusion of environmental regimes increased the explained variation of temporal β-diversity and its components. Environmental regimes are expected to advance the "environment-community" relationships in ecological studies. They can further be implemented in other subjects such as social science, socioeconomics, and epidemiology

    Environmental filtering, spatial processes and biotic interactions jointly shape different traits communities of stream macroinvertebrates

    Get PDF
    The metacommunity concept has been widely used to explain the biodiversity patterns at various scales. It considers the influences of both local (e.g., environmental filtering and biotic interactions) and regional processes (e.g., dispersal limitation) in shaping community structures. Compared to environmental filtering and spatial processes, the influence of biotic interactions on biodiversity patterns in streams has received limited attention. We investigated the relative importance of three ecological processes, namely environmental filtering (including local environmental and geo-climatic factors), spatial processes and biotic interactions (represented by interactions of macroinvertebrates and diatom), in shaping different traits of macroinvertebrate communities in subtropical streams, Eastern China. We applied variance partitioning to uncover the pure and shared effects of different ecological processes in explaining community variation. The results showed that environmental filtering, spatial processes, and biotic interactions jointly determined taxonomic and trait compositions of stream macroinvertebrates. Spatial processes showed a stronger influence in shaping stream macroinvertebrate communities than environmental filtering. The contribution of biotic interactions to explain variables was, albeit significant, rather small, which was likely a result of insufficient representation (by diatom traits) of trophic interactions associated with macroinvertebrates. Moreover, the impact of three ecological processes on macroinvertebrate communities depends on different traits, especially in terms of environmental filtering and spatial processes. For example, spatial processes and environmental filtering have the strongest effect on strong dispersal ability groups; spatial processes have a greater effect on scrapers than other functional feeding groups. Overall, our results showed that the integration of metacommunity theory and functional traits provides a valuable framework for understanding the drivers of community structuring in streams, which will facilitate the development of effective bioassessment and management strategies

    症例の予後改善のための,電子ビームCT,4列~320列CTを用いた循環器領域の新しい臨床診断学の開発への貢献

    Get PDF
    I went to the Stanford University Department of Radiology\u27s three-dimensional (3D) imaging laboratory from 1996 to 1999 to study a novel 3D image processing technique using electron beam computed tomography (CT). When I returned to Japan, I found that multi-slice CT had been available in daily practice since 1998. We have published a total of 152 peer-reviewed papers on diagnostic images in the field of cardiovascular disease. In 2003, when 16-slice CT was available for use in general hospitals, we successfully developed a prototype 256-slice cone-beam CT at the National Institute of Radiological Sciences. We produced several papers discussing the utilities of this prototype CT in both animal and phantom experiments, the concepts and ideas that were currently used for cardiac perfusion and myocardium characteristic study. In 2010, our paper was used as a reference in the American College of Cardiology Foundation Expert Consensus Guideline. The our current topics presented include coronary artery stenosis, coronary arterial plaques, the characteristics of the myocardium, the anatomy of structural and congenital heart disease, and the cardiac function, all using 16-320 slice CT with reduced radiation exposure in CT acquisition. Furthermore, we are now performing novel clinical CT studies combined magnetic resonance imaging (MRI), positron emission tomography, and echocardiography. Using previous image data, we analyzed an epidemiology study using CT findings to predict the occurrence of major cardiovascular adverse events over long-term follow-up periods of more than 100 months (median), one of the longest follow-up periods documented in the literature. We also need to obtain accurate diagnoses for subjects with cardiac failure or fatal arrhythmia of unknown origin, allowing them to receive specific effective therapy for their possible cardiac amyloidosis, cardiac sarcoidosis, or Fabry\u27s disease. Of course, in all CT imaging techniques used for evaluation and monitoring of cardiovascular risk

    Piver Type II vs. Type III Hysterectomy in the Treatment of Early-Stage Cervical Cancer: Midterm Follow-up Results of a Randomized Controlled Trial

    Get PDF
    Introduction: With the expansion of value-based medicine, we explore whether using type III hysterectomy to treat low-risk, early-stage cervical cancer constitutes overtreatment. In present study, we evaluate the midterm safety and postoperative quality of life of patients who underwent type II hysterectomy vs. type III hysterectomy with systematic lymphadenectomy for low-risk early-stage cervical cancer (International Federation of Gynecology and Obstetrics (FIGO) IA2-IB1; maximum tumor diameter < 2 cm).Patients and methods: The main study was a multicenter, phase III, randomized controlled trial (NCT02368574, https://www.clinicaltrials.gov/ct2/show/NCT02368574). Patients meeting the criteria were randomly divided into type II and type III hysterectomy groups between 2015 and 2018. Midterm outcomes were analyzed at 36 months after the first eligible patient was enrolled. The primary end point was disease-free survival, and the secondary end point was postoperative quality of life.Results: A total of 97 patients were preliminarily enrolled, 93 of whom were included in the final analysis. The general information of the two groups did not differ. The 2-year DFS rate in the type II group was 100% compared with 97.9% in the type III group (P > 0.05). Compared to the type III group, the patients who underwent type II hysterectomy showed a shorter surgical time (163 ± 18.8 min vs. 226 ± 16.4 min, P = 0.014), less intraoperative blood loss (174 ± 27.7 ml vs. 268 ± 37.4 ml, P = 0.047), less postoperative urinary retention (5/46 vs. 11/47 cases, P = 0.109), and milder bladder injuries. The postoperative symptom experience scores of the type II group were significantly lower than those of the type III group. Moreover, the postoperative sexual/vaginal functioning and lubrication scores of the type II group were significantly lower than those of the type III group in subgroup analyses of patients who did not undergo postoperative chemoradiotherapy. Sexual apprehension scores were increased postoperatively in both groups.Conclusion: Based on the midterm analysis, the two groups show considerable security within 2 years after surgery, but long-term security requires further analysis. Type II hysterectomy can effectively reduce the surgical time and intraoperative blood loss, decrease postoperative complications, and improve the quality of life of early-stage cervical cancer patients

    Establishment and Application of Multiple Cross Displacement Amplification Coupled With Lateral Flow Biosensor (MCDA-LFB) for Visual and Rapid Detection of Candida albicans in Clinical Samples

    Get PDF
    Candida albicans is an opportunistic pathogenic yeast that predominantly causes invasive candidiasis. The conventional diagnosis of C. albicans infection depends on time-consuming, culture-based gold-standard methods. Here, a multiple cross displacement amplification (MCDA) assay, combined with a gold nanoparticle-based lateral flow biosensor (LFB) visualization method, was developed for the rapid detection of C. albicans. The internal transcribed spacer II, a region between 5.8 and 28 S fungal ribosomal DNA, is a C. albicans species-specific sequence that was used as the MCDA assay target. As an isothermal amplification method, the MCDA reaction with optimized conditions could be completed within only 40 min at a constant temperature (64°C). Then, the amplification reaction products could be visibly detected by a LFB without special equipment. The developed MCDA-LFB assay for C. albicans detection was a specific and accurate method, and could distinguish C. albicans from other pathogens. Just 200 fg of genomic DNA template from pure cultures of C. albicans could be detected using the MCDA-LFB method. The limit of detection (LOD) of the new method was more sensitive than that of both qPCR and loop-mediated isothermal amplification (LAMP). Of 240 clinical sputum samples, all of the C. albicans-positive (87/240) samples identified by the gold-standard method were successfully detected by the MCDA-LFB assay. Moreover, the true positive rate of the newly developed assay was not only higher than that of qPCR (100 vs. 86.2%), but also higher than that of LAMP (100 vs. 94.3%). Thus, the MCDA-LFB assay might be a simple, specific, and sensitive method for the rapid diagnosis of C. albicans in clinical samples

    Application of Sodium Silicate Enhances Cucumber Resistance to Fusarium Wilt and Alters Soil Microbial Communities

    No full text
    Exogenous silicates can enhance plant resistance to pathogens and change soil microbial communities. However, the relationship between changes in soil microbial communities and enhanced plant resistance remains unclear. Here, effects of exogenous sodium silicate on cucumber (Cucumis sativus L.) seedling resistance to Fusarium wilt caused by the soil-borne pathogen Fusarium oxysporum f.sp. cucumerinum Owen (FOC) were investigated by drenching soil with 2 mM sodium silicate. Soil bacterial and fungal community abundances and compositions were estimated by real-time PCR and high-throughput amplicon sequencing; then, feedback effects of changes in soil biota on cucumber seedling resistance to FOC were assessed. Moreover, effects of sodium silicate on the growth of FOC and Streptomyces DHV3-2, an antagonistic bacterium to FOC, were investigated both in vitro and in the soil environment. Results showed that exogenous sodium silicate enhanced cucumber seedling growth and resistance to FOC. In bare soil, sodium silicate increased bacterial and fungal community abundances and diversities. In cucumber-cultivated soil, sodium silicate increased bacterial community abundances, but decreased fungal community abundances and diversities. Sodium silicate also changed soil bacterial and fungal communality compositions, and especially, decreased the relative abundances of microbial taxa containing plant pathogens but increased these with plant-beneficial potentials. Moreover, sodium silicate increased the abundance of Streptomyces DHV3-2 in soil. Soil biota from cucumber-cultivated soil treated with sodium silicate decreased cucumber seedling Fusarium wilt disease index, and enhanced cucumber seedling growth and defense-related enzyme activities in roots. Sodium silicate at pH 9.85 inhibited FOC abundance in vitro, but did not affect FOC abundance in soil. Overall, our results suggested that, in cucumber-cultivated soil, sodium silicate increased cucumber seedling resistance to Fusarium wilt by changing soil microbial communities rather than by directly inhibiting the growth of FOC
    corecore