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The metacommunity concept has been widely used to explain the biodiversity

patterns at various scales. It considers the influences of both local

(e.g., environmental filtering and biotic interactions) and regional processes

(e.g., dispersal limitation) in shaping community structures. Compared to

environmental filtering and spatial processes, the influence of biotic interactions

on biodiversity patterns in streams has received limited attention. We investigated

the relative importance of three ecological processes, namely environmental

fi ltering (including local environmental and geo-climatic factors),

spatial processes and biotic interactions (represented by interactions of

macroinvertebrates and diatom), in shaping different traits of macroinvertebrate

communities in subtropical streams, Eastern China. We applied variance

partitioning to uncover the pure and shared effects of different ecological

processes in explaining community variation. The results showed that

environmental filtering, spatial processes, and biotic interactions jointly

determined taxonomic and trait compositions of stream macroinvertebrates.

Spatial processes showed a stronger influence in shaping stream

macroinvertebrate communities than environmental filtering. The contribution

of biotic interactions to explain variables was, albeit significant, rather small, which

was likely a result of insufficient representation (by diatom traits) of trophic

interactions associated with macroinvertebrates. Moreover, the impact of three

ecological processes on macroinvertebrate communities depends on different

traits, especially in terms of environmental filtering and spatial processes. For

example, spatial processes and environmental filtering have the strongest effect on

strong dispersal ability groups; spatial processes have a greater effect on scrapers

than other functional feeding groups. Overall, our results showed that the
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integration of metacommunity theory and functional traits provides a valuable

framework for understanding the drivers of community structuring in streams,

which will facilitate the development of effective bioassessment and

management strategies.
KEYWORDS

biotic interactions, diversity, environmental filtering, metacommunity, spatial
processes, trait
1 Introduction

Understanding the variation in biodiversity patterns and

underlying mechanisms is a central topic of community ecology

and biogeography (Gaston, 2000; Chase, 2003). Previous research

has showed the importance of niche-based processes (e.g., through

environmental filtering and biotic interaction) and dispersal-related

processes in structuring communities at different scales (Mykra

et al., 2007). These two types of processes are not independent of

each other, and often work in concert to shape community structure

(Logue et al., 2011; Leibold et al., 2017; Guzman et al., 2019).

The metacommunity theory considers both local and spatial

processes and provides an excellent framework for understanding

the diversity and abundance of species at various scales (Heino,

2013). Many theories have been proposed to explain the

metacommunity dynamics, which could be grouped into four

paradigms, including species sorting, patch dynamics, mass

effects, and neutral models (Leibold et al., 2004; Declerck et al.,

2011; Zhou et al., 2020). These four paradigms differ in their

emphasis on local processes, regional processes, disturbances and

the equivalence of species traits. Species sorting (i.e., “deterministic

process”) focuses more on local environmental contexts and

presumes that good dispersers have the ability to reach all

suitable niches (Cottenie et al., 2003) while mass effects (i.e.,

“stochastic processes”) place more emphasis on the influence of

dispersal on local communities (Mouquet et al., 2003). According to

patch dynamics paradigm, environmental filtering does not play an

important role in shaping local communities whereas regional

dynamics are the consequence of extinction and colonization

(Cadotte, 2007). Neutral models assume no differences among

species in terms of their traits and model community

compositions by species losses, gains and probabilistic

colonization (Hubbell and Borda-De-Agua, 2004). Of these four

paradigms, species sorting and mass effects are considered as the

two main paradigms for simultaneous community construction

(Vilmi et al., 2017). However, other paradigms may also have an

impact on community constructing processes and these processes

may not be mutually exclusive. It is therefore essential to consider

the impact of multiple ecological processes on community assembly

simultaneously (Winegardner et al., 2012). The life history of

macroinvertebrates includes dispersal behaviors that can span

multiple spatial scales, making them ideal organisms for studying
02
the mechanisms of metacommunity assembly in stream networks

(Brown et al., 2011; Sarremejane et al., 2020).

Macroinvertebrates are widespread and support important

ecological functions in freshwater ecosystems (Schmera et al.,

2017). They have been widely used in water quality assessment

and environmental monitoring due to several reasons, including

their short lifespan and rapid responses to environmental change

(Armitage et al., 1983). Macroinvertebrate communities are often

directly influenced by physiochemical variables in the aquatic

environment (Li et al., 2020; Jiang et al., 2021a; Wu et al., 2022a).

In addition, climate changes often lead to alterations in

environmental conditions that indirectly affect macroinvertebrate

communities. For example, changes in temperature affect the

survival of aquatic organisms and alter their distribution ranges

(Li et al., 2012). Likewise, flow dynamic in stream are strongly

affected by precipitation, in turn, posing impacts on

macroinvertebrates (Perez Rocha et al., 2018; Hsieh et al., 2022).

In addition, macroinvertebrates link primary producers and

vertebrate predators in aquatic food web. They feed on diatom,

coarse detritus or fine-grained organic matter, and fall prey to

species at higher trophic levels, such as fish (Covich et al., 1999;

Statzner, 2012). However, only a few studies have included biotic

interactions in their analysis when investigating the processes

determining community structures (Garcia-Giron et al., 2020;

Kurthen et al., 2020). Mountainous streams provide an ideal

context for studying the influence of multiple ecological processes

on biotic communities. Such areas typically have environmental

heterogeneity, complex topographic structure, wide spatial extent,

and high levels of biodiversity (Tockner et al., 2010; Wu et al., 2021).

Compared to taxonomic composition, trait composition can

directly reflect the influence of environment on species (ecological,

behavioral and morphological characteristics). This can help

researchers understand the underlying factors of community assembly

(Gianuca et al., 2017;Rideoutet al., 2022).Traitshave received increasing

attention in ecological and biogeographical research to study the

association between the environment and biodiversity (Meynard et al.,

2011; Heino and Tolonen, 2017;Wang et al., 2023).Macroinvertebrates

are an excellent model for trait-based research because they vary in

morphology, feeding and behavior habits, dispersal ability, and life

history strategies (Cummins et al., 2005). Indeed, these traits are

essential in determining the success of their survival, dispersal,

colonization of new habitats (Jiang et al., 2021b).
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To fill the aforementioned knowledge gap, we aim to

disentangle the effects of environmental filtering (i.e., local

environment and geo-climate), spatial processes, and biotic

interactions (i.e., between macroinvertebrates and diatom) on the

taxonomic and trait compositions of stream macroinvertebrates.

Furthermore, we analyzed the relative importance of ecological

processes affecting macroinvertebrate communities with different

traits, which is particularly important for biodiversity conservation

and management (Doledec and Statzner, 2010). We hypothesize

that (H1) environmental filters, spatial processes, and biotic

interactions jointly shape the structure of macroinvertebrate

communities. Since taxa that share similar ecological niches are

often grouped into the same trait categories, replacement of taxa is

not necessarily associated with turnover of traits (Tapolczai et al.,

2016; Wu et al., 2022a). In addition, dispersal limitation is likely to

influence taxonomic compositions of macroinvertebrates among

study sites given the large spatial extent of our study area. We

therefore hypothesize that (H2) environmental filtering has a

greater effect on trait composition, while taxonomic composition

is more influenced by spatial processes. As biological and ecological

traits are strongly linked to their interactions with the environment,

we therefore assume that (H3) the relative importance of local and

regional processes in structuring communities varies between

groups with different traits. Two specific hypotheses (H3a and

H3b) regarding dispersal ability and functional feeding habit are

as follows:
Fron
a. for dispersal ability groups (DAG), we expect that taxa with

stronger dispersal ability are more influences by

environmental conditions than weak dispersals. Since

macroinvertebrates with strong dispersal ability often can

overcome land barrier and move to new suitable habitats,

their community similarity can reflect the environmental

gradients between habitats (Heino, 2013).

b. for functional feeding groups (FFG), we hypothesized that

the influence of biotic interactions on the scraper would be

stronger than on the other groups when interactions

between benthic diatom and macroinvertebrates were

considered because scrapers mainly consume the biofilm

on substrates (Heino, 2005; Ramirez and Gutierrez-

Fonseca, 2014).
2 Materials and methods

2.1 Study area description

Our study area is the catchment of the Thousand Islands Lake

(TIL), which is located in the subtropical monsoon climate zone of

Eastern China (Figure 1). The area has a catchment area of

approximately 10,080 km2, with an average annual precipitation

of 1430 mm. Within the catchment, the sampling sites have an

elevation gradient of over 500 m. Studies across such large

environmental gradients are extremely helpful in revealing the
tiers in Ecology and Evolution 03
influence of the environment on community assembly

mechanisms (Thrush et al., 2006).
2.2 Sampling and identification
of macroinvertebrates

We investigated 147 sites in the TIL catchment in April and

May 2021. Sampling sites cover as evenly as possible the wadable

section of the river from the headwaters to large rivers. Meanwhile,

sampling sites were selected to avoid stream sections directly below

the confluence or with severe impacts from anthropogenic

disturbances (e.g., wastewater outlets, bridges and villages).

At each sampling sites, macroinvertebrates were collected with a

Surber net (30 × 30 cm2, 500 mmmesh) from habitats with different

substrate compositions (e.g., cobble, rock, fine sediment) and flow

conditions (e.g., water depth and current). The collection was

repeated three times at each sampling site and the collected

samples were stored in a portable holding tank and then sorted

and then preserved in 70% alcohol. Macroinvertebrates were

identified in the laboratory to the lowest possible taxonomic level

(mainly to genus) using both books (Morse et al., 1994; Holzenthal,

2009; Merritt et al., 2017) and online identification resources

(https://www.macroinvertebrates.org/).
2.3 Explanatory variables

2.3.1 Local environment (Local)
Local hydro-morphological parameters were measured in situ,

including river width (Width), water depth (Depth), and flow

velocity (Velocity, measured with Global Water flow meter).

Habitat characteristics, including percentages of different

hydrological conditions and substrates, were assessed following

Qualitative Habitat Evaluation Index (QHEI), which is a

multiscale qualitative habitat evaluation index published by the

US EPA in 1989 as a measure of the physical integrity of streams

(Taft and Koncelik, 2006). In addition, pH, conductivity, and water

temperature were measured with a water quality handheld meter

(YSI Professional Plus). Water samples were collected at each site

and stored at −4°C before further analysis in the laboratory. The

concentrations of total phosphorus (TP), total nitrogen (TN),

chemical oxygen demand (CODMn), ammonia nitrogen (NH3-

N), nitrate nitrogen (NO3-N), soluble reactive phosphorus (PO4-P)

and different metals (e.g., Cu, Cr, and Mn) were measured in the

laboratory according to the Water and Waste Water Monitoring

and Analysis Method (The State Environmental Protection

Administration The Water and Wastewater Monitoring Analysis

Method Editorial Board, 2002).

2.3.2 Geo-climatic (Geo)
We grouped climate (e.g., annual mean temperature and annual

precipitation), land use and topographic data into a group as Geo-

climatic variables. Land-use data were obtained from Yang and

Huang (2021), which provided data on land cover in China with a
frontiersin.org
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spatial resolution of 30 m. Based on the characteristics of the study

area, we regrouped the land-use types into six categories, namely

forest, cropland, shrubs, grassland, water and impervious.

Topographic variables, including elevation, slope, and aspect,

were extracted from Amatulli et al. (2018). Slope indicates the

steepness of the stream along a longitudinal gradient and aspect

captures information on the north–south and east–west orientation

of each sampling site (Amatulli et al., 2018). In total, 19 bioclimatic

variables (Bio1 to Bio19) were obtained from theWorldClim 2 (Fick

and Hijmans, 2017) database and consist mainly of data derived

from monthly temperature and precipitation values.

2.3.3 Spatial
We used asymmetric eigenvector maps (AEMs) to represent our

spatial factors, which was specifically designed to model directional

patterns (Blanchet et al., 2008b). This spatial analysis generates

spatial variables along directional flow and has proven to be an

effective way of modelling dispersal processes in stream

communities (Dong et al., 2016; Wan et al., 2018). AEMs with

smaller eigenvalues indicate broad-scale spatial patterns whereas

larger eigenvalues indicate fine-scale patterns. First, the grid2nb

function with the R package spdep was used to calculate the

neighbors list (Bivand, 2022). Next, A site-by-edge binary matrix

was constructed based on coordinates of the sampling sites and the

directional links among sites using the aem.build.binary function in

R package adespatial (Blanchet et al., 2011). Finally, the aem

function in the same package was used to create eigenvectors.

Due to the large spatial extent of our study area, we finally

obtained 134 AEMs (i.e., AEM1-AEM134).
2.3.4 Biotic interactions (Bio)
Biotic interactions in this study were represented primarily by

macroinvertebrates and diatom interactions and included mainly
Frontiers in Ecology and Evolution 04
chlorophyll a and the percentage content of diatom traits at each

sampling site. Many macroinvertebrates feed on organic matter and

diatom (Schmera et al., 2017). Recent study showed that diatom are

a high quality food for stream macroinvertebrates and influence the

growth and reproduction of macroinvertebrates (Guo et al.,

2016).The influence of benthic diatom on scrapers might be

profound as they mainly feed on biofilm attached to the substrate

(Heino, 2005). Diatom were classified into different groups

according to cell size, guild and life form (Wang et al., 2022), see

Appendix 1 for details.
2.4 Data analysis

In our study, metacommunity deconstruction, selection of

explanatory variables (Local, Geo and Spatial only, while Bio data

were enforced into all models) and variation partitioning analysis

were major processes (Figure 2).

In total, five trait groups were collected for each species (Table 1,

Appendix 2). Two groups of traits (i.e., DAG and FFG) were

deconstructed and included in the next step of the analysis.

All data processing was performed in R (Version 4.2.1, R Core

Team, 2020). First, we prepared explanatory factors datasets

including local environmental (Local), geo-climatic (Geo), spatial

(Spatial) and biotic interactions (Bio) factors (Table 2, Appendix 3).

In the next step, the abundance matrix was subjected to a Hellinger

transformation. Prior to the analysis, we removed variables with

significant multicollinearity (with variance inflation factor ≥ 3;

vifstep function in the R package usdm) for all explanatory factors

(Naimi et al., 2014). The forward.sel function in the R package

adespatial was used for forward selection (Blanchet et al., 2008a),

which contains two stopping criteria: significance level and adjusted

coefficient of determination (adjusted R2). Subsequently, we

obtained a final group of Local, Geo and Spatial factors and
FIGURE 1

Distribution map of the 147 sampling sites in the Thousand Islands Lake (TIL) catchment, China.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1196296
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1196296
tested the significance of each component using the anova function

in the R package vegan (Oksanen et al., 2019). Details of forward

selection were described in Appendices 3 and 4. Because we wanted

to know the effects of biotic interactions on macroinvertebrates

communities, biotic interactions factors were forced into all of the

variation partitioning models without the above procedures.

Finally, the varpart function in the R package vegan was used in

the variance partitioning analysis to quantify the pure and shared

effects of the four types of explanatory factors on the communities

of macroinvertebrates.
3 Results

3.1 Explanatory variables and
macroinvertebrate metacommunity

Abiotic and biotic variables showed a large variation across the

sampling sites (Table 2). For example, conductivity (Cond) ranged

from 14.23 to 363.00 µs/cm (mean: 167.07 µs/cm) while the

concentrations of nitrate nitrogen (NO3-N) ranged from 0.21 to

3.40 mg/L (mean: 1.02 mg/L).

In total, 199 taxa were observed, belonging to 4 phyla, 9 classes,

22 orders and 89 families. Aquatic insects accounted for 75% of the

total richness, with Ephemeroptera (36 taxa) and Diptera (31 taxa)

being the most abundant taxa. In terms of traits composition, the

dominant functional feeding group and habit trait group were

predator (64 taxa) and clinger (88 taxa).
Frontiers in Ecology and Evolution 05
3.2 Main drivers of taxonomic and
traits metacommunity

The results of forward selection procedures were in Appendix 4

and 5. Results of the variance partitioning showed that local

environmental, geo-climatic, spatial and biotic interactions all had

considerable impacts on taxonomic and trait compositions of

macroinvertebrates (Figure 3), supporting our first hypothesis

(H1). The total explained variation by the four explanatory

factors for taxonomic composition and trait compositions was

15% and 28%, respectively. The pure effect of environmental

filtering (i.e., local environmental and geo-climatic) was smaller

than that of spatial processes for both taxonomic and trait

compositions, which rejected part of our second hypothesis (H2).

In addition, biotic interactions contributed more to the explained

variation in taxonomic composition than local environmental and

geo-climatic variables.
3.3 Relative importance of environmental
filtering and spatial processes to different
traits metacommunity

For the dispersal ability groups, the total explained variance

ranged from 9% to 61%. The highest pure effect of environmental

filtering (local environmental and geo-climatic) was for DAG04

(2% and 1%), followed by DAG03 (1% and 1%), and the lowest was

for DAG02 (only geo-climatic 1%) and DAG01 (only geo-climatic
FIGURE 2

Diagram of the main analytical methods used in this study. FFG, functional feeding groups; HTG, Habit trait groups; DAG, Dispersal ability groups;
FlCa, Flight capacity groups; BoSi, Body size groups.
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1%), which supported our third hypothesis (H3a). Meanwhile, the

highest pure effect explained by spatial was for DAG04 (52%),

followed by DAG01 (15%) and DAG02 (11%) and the lowest was

for DAG03 (4%) (Figure 4).

For the functional feeding groups, the pure effect explained by

biotic interactions was 2% for scrapers and non-scrapers, which did

not prove our third hypothesis (H3b). In addition, the pure effect of

spatial on scrapers (7%) was much higher than other functional

feeding groups (2%) (Figure 4).
4 Discussion

4.1 Main drivers of macroinvertebrate
metacommunity

Our results showed that local (i.e., environmental filtering and

biotic interactions) and regional (i.e., dispersal limitation) processes
Frontiers in Ecology and Evolution 06
jointly shaped the metacommunity structure of stream

macroinvertebrates in the Thousand Islands Lake Catchment,

which supports our first hypothesis (H1). This stands in line with

observations in previous studies that biodiversity patterns in stream

ecosystems are influenced by a multitude of ecological processes at

local and regional scales (Poff, 1997; Heino et al., 2007; Chiu et al.,

2020). We have investigated the potential role of biotic interactions

in community assembly of stream macroinvertebrates, which has

received limited attention in previous research (Barbee, 2005;

Schneck et al., 2013). Despite of this, the proportion of explained

variation in our study remained quite low (15–28%). Although low

explained variation was also observed in previous studies that

investigated the factors shaping metacommunity of stream

macroinvertebrates (Cai et al., 2017; Perez Rocha et al., 2018;

Branco et al., 2020), such phenomena indicates that some

underlying drivers of macroinvertebrates metacommunity

s tructure may have been over looked . Indeed , many

environmental variables (e.g. , detailed information on
TABLE 1 Macroinvertebrates traits, their categories, codes and descriptions used in this study.

Traits groups Categories Codes Descriptions

Functional feeding groups
(Heino, 2005; Ramirez and
Gutierrez-Fonseca, 2014)

Filter-collector FFG_fc The FFG classification was based on the food sources of macroinvertebrates, and takes into account
the morphological and behavioral characteristics used in food acquisition.

Gather-
collector

FFG_gc

Shredder FFG_sh

Scraper FFG_sc

Predator FFG_pr

Habit trait groups
(Merritt et al., 2010)

Burrower HTG_bu HTG delineation was based on macroinvertebrates mobility and microhabitat use.

Climber HTG_cb

Clinger HTG_cn

Sprawler HTG_sp

Swimmer HTG_sw

Dispersal ability groups
(Bilton et al., 2001; Van De
Meutter et al., 2007)

Weak DAG01 The classification of DAG was based on the ability of macroinvertebrates to spread on land.

Comprised
weak

DAG02

Comprised
intermediate

DAG03

Comprised
strong

DAG04

Flight capacity groups
(Poff et al., 2006; Saito et al.,
2015)

Aquatic
obligate

FlCa01 FlCa classification was based on the ability of macroinvertebrates to direct flight.

Low FlCa02

Medium FlCa03

High FlCa04

Body size groups
(Saito et al., 2015)

< 1 cm BoSi01 BoSi was classified according to the size of the adult macroinvertebrates.

1–1.5 cm BoSi02

> 1.5 cm BoSi03
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TABLE 2 Descriptive statistics for the local environmental variables.

Category variables Units Mean Max Min

Width m 13.23 104.77 1.23

Water depth cm 24.90 80.00 9.00

Velocity m/s 0.41 1.07 0.01

pH – 7.65 9.50 5.51

Water temperature °C 17.23 23.27 7.87

Conductivity µs/cm 167.07 363.00 14.23

Permanganate index mg/L 1.12 2.64 0.48

Amonia nitrogen mg/L 0.11 0.40 0.03

Nitrate nitrogen mg/L 1.02 3.40 0.21

Soluble reactive phosphorus mg/L 0.01 0.06 0.00

Total nitrogen mg/L 1.80 4.20 0.81

Total phosphorus mg/L 0.05 0.51 0.01

TN/TP – 45.02 138.86 5.94

Habitat score % 65.68 80.77 31.87

Cu mg/L 0.48 7.89 0.00

Cr mg/L 0.57 9.79 0.00

As mg/L 1.02 6.57 0.01

Fe mg/L 96.96 458.18 0.00

Se mg/L 0.46 25.62 0.00

Mn mg/L 1.56 33.92 0.00

Zn mg/L 5.82 97.25 0.00

Cd mg/L 0.02 0.68 0.00

Ni mg/L 0.64 3.38 0.00
F
rontiers in Ecology and Evolution
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FIGURE 3

Results of variation partitioning based Venn diagrams, showing taxonomic composition and trait compositions explained by pure and shared effects
of local environment (Local), geo-climate (Geo), spatial (Spatial) and biotic interactions (Bio). Local, Geo and Spatial variables were passed through
forward selection procedure, while Bio variables were forced into all models. All FIGUREs represented the percentage of total variance derived for
each fraction based on adjusted R2 and negative values were not shown. Significance was indicated as *** p < 0.001, ** p < 0.01.
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hydromorphology of sampling sites), environmental regimes

(e.g., temporal regimes of flow and nutrient concentrations),

spatial processes (e.g., different dispersal pathways between

sampling sites) and stochastic events (e.g., random local

extinctions), albeit challenging to measure, have not been

included in the analyses but might have substantial influence on

metacommunity structure of stream organisms (Heino et al., 2015;

Wu et al., 2022b; Wu et al., 2023).

The effects of environmental filterings on taxonomic and trait

compositions were largely consistent, while the spatial factors had a

greater effect on both taxonomic and trait compositions than the

environmental variables, which partially rejects our second
Frontiers in Ecology and Evolution 08
hypothesis (H2). The unexpected large influence of spatial

processes is consistent with the findings of recent studies (Mugnai

et al., 2022; Wu et al., 2022a). We speculate that this may be related to

the following reasons. First, previous studies had generally concluded

that spatial processes had a limited impact on small organisms, with

environmental filtering playing a dominant role (Leibold, 1998;

Cottenie et al., 2003). However, over the last two decades an

increasing number of studies demonstrated that spatial processes

also have a significant impact on small organisms (Liu et al., 2021),

and this was similarly the case in streams (Wan et al., 2015; Wu et al.,

2022a). Second, the heterogeneous mountain landscape provided a

variety of unique ecological niche opportunities andmicrohabitats for
FIGURE 4

Results of variation partitioning based Venn diagrams, showing different traits metacommunity (i.e., DAG and FFG) explained by unique and joint effects
of local environment (Local), geo-climate (Geo), spatial (Spatial) and biotic interactions (Bio). Local, Geo and Spatial variables were passed through
forward selection procedure, while Bio variables were forced into all models. All FIGUREs represented the percentage of total variance derived for each
fraction based on adjusted R2 and negative values were not shown. Significance was indicated as *** p < 0.001, ** p < 0.01, * p < 0.05.
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macrobenthos, as well as relatively large dispersal barriers for species

with poor dispersal abilities (Li et al., 2021). As a result, these factors

might contribute to the strong influence of spatial factors on

taxonomic and trait compositions. Surprisingly, although biotic

interactions did not affect trait composition, they explained a non-

negligible percentage (2%) of the taxonomic composition.

Macroinvertebrates play an important role in stream ecosystems,

some of the macroinvertebrates diet also includes coarse or fine

particles and zooplankton, and macroinvertebrates may also be food

for some fish (Guo et al., 2016; Schmera et al., 2017). Therefore, if

future studies consider quantifying biotic interactions across multiple

trophic levels, the explanatory rate of this process may be

further improved.
4.2 Metacommunity and traits of
stream macroinvertebrates

These three ecological processes (i.e., environmental filtering,

spatial processes and biotic interactions) have varying effects on

different macroinvertebrate traits groups (supporting H2), as found

in our findings and other related studies (Souffreau et al., 2015; Wan

et al., 2015; Liu et al., 2016). Trait-based deconstruction approach

can improve our understanding of the mechanisms of community

assembly in different traits groups. This demonstrates the

importance of using traits in bioassessment. For example, certain

species that are little affected by spatial processes (mainly mass

effects) and are closely linked to their environment may be excellent

candidates for biological evaluation (Leboucher et al., 2020; Bried

and Vilmi, 2022). However, only part of the priori expectations has

been verified (H3).

We expected that the importance of environmental filtering was

positively associated with the dispersal ability of macroinvertebrates.

For taxa with strong dispersal ability, it is assumed that they could

overcome the barriers within the catchment and find suitable

habitats. Therefore, dissimilarity of their compositions could be

used to track environmental gradients within the catchment

(Heino, 2013). The predicted importance of environmental filtering

for different groups of dispersal ability was broadly in line with our

expectations. At the same time, the effect of the spatial processes

gradually decreased from DAG01 to DAG03, which was in line with

our expectations. However, the effect of the spatial factors on DAG04

was surprisingly high. This might be due to the strong mass effects on

DAG04 (i.e., strong aerial dispersers) in this particular basin.

Mass effects allow species to persist by dispersing to unfavorable

environments (Mouquet and Loreau, 2003). Species in DAG04 have

a strong dispersal capacity, which may lead to such species being

subject to mass effects or even severing their links with their

environment (Heino et al., 2017; Corte et al., 2018; Wu

et al., 2022a).

For FFG, we hypothesized that the effect of biotic interactions

on the scraper would be stronger than on the other groups.

However, we did not detect an obvious difference between the
Frontiers in Ecology and Evolution 09
two groups. The use of diatom traits alone to indicate complex

biotic interactions associated with macroinvertebrates is likely

insufficient. Moreover, we only considered diatom traits while

scrapers also feed on other components of periphyton (i.e., fungi,

microbes, bacteria, plant detritus, and animals) on substrates

(Ste lzer and Lambert i , 2002 ; Heino, 2005) . A more

comprehensive representation of the effect of biotic interactions

on scrapers would be possible if the above factors were considered

in the future studies. We also observed that the spatial processes had

a greater effect on the scrapers than other functional feeding groups.

In the Thousand Islands Lake Catchment, many scrapers are

aquatic obligate species (e.g., Gastropoda) and have poor dispersal

ability. Dispersal limitation is likely to play an important role in

shaping their spatial distributions (Firmiano et al., 2021).
5 Conclusion

In summary, our study contributes to metacommunity research

in stream ecosystems, which provide a promising framework for

biodiversity conservation and management in stream ecosystems

(Cid et al., 2022). Our results highlighted the influence of biotic

interactions, which is often overlooked in previous research, on

community assembly of stream macroinvertebrates. Although the

observed effect of biotic interactions is small, it is likely due to

insufficient representation of trophic interactions associated with

macroinvertebrates. Future studies need to comprehensively

investigate the roles of biotic interactions across multiple trophic

levels in shaping community structures in stream ecosystems. We

found that environmental filtering, spatial processes and biotic

interactions jointly shaped community assembly of stream

macroinvertebrates, and their relative importance to groups with

different traits varied. Hence, trait-based approaches with spatial

processes and connectivity of stream ecosystems taken into

consideration, can strengthen our understanding of community

structuring in stream ecosystems and facilitate the development of

effective conservation and management strategies.
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