73 research outputs found

    Novel dopants for n-type doping of electron transport materials: cationic dyes and their bases

    Get PDF
    The history of silicon technology showed that controlled doping was a key step for the realization of e®ective, stable and reproducible devices. When the conduction type was no longer determined by impurities but could be controlled by doping, the breakthrough of classical microelectronics became possible. Unlike inorganic semiconductors, organic dyes are up to now usually prepared in a nominally undoped form. However, controlled and stable doping is desirable in many organic-based devices as well. If we succeed in shifting the Fermi level towards the transport states, this could reduce ohmic losses, ease carrier injection from contacts and increase the built-in potential of Schottky- or pn-junctions

    Rapidly progressive interstitial lung disease risk prediction in anti-MDA5 positive dermatomyositis: the CROSS model

    Get PDF
    BackgroundThe prognosis of anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+DM) is poor and heterogeneous. Rapidly progressive interstitial lung disease (RP-ILD) is these patients’ leading cause of death. We sought to develop prediction models for RP-ILD risk in anti-MDA5+DM patients.MethodsPatients with anti-MDA5+DM were enrolled in two cohorts: 170 patients from the southern region of Jiangsu province (discovery cohort) and 85 patients from the northern region of Jiangsu province (validation cohort). Cox proportional hazards models were used to identify risk factors of RP-ILD. RP-ILD risk prediction models were developed and validated by testing every independent prognostic risk factor derived from the Cox model.ResultsThere are no significant differences in baseline clinical parameters and prognosis between discovery and validation cohorts. Among all 255 anti-MDA5+DM patients, with a median follow-up of 12 months, the incidence of RP-ILD was 36.86%. Using the discovery cohort, four variables were included in the final risk prediction model for RP-ILD: C-reactive protein (CRP) levels, anti-Ro52 antibody positivity, short disease duration, and male sex. A point scoring system was used to classify anti-MDA5+DM patients into moderate, high, and very high risk of RP-ILD. After one-year follow-up, the incidence of RP-ILD in the very high risk group was 71.3% and 85.71%, significantly higher than those in the high-risk group (35.19%, 41.69%) and moderate-risk group (9.54%, 6.67%) in both cohorts.ConclusionsThe CROSS model is an easy-to-use prediction classification system for RP-ILD risk in anti-MDA5+DM patients. It has great application prospect in disease management

    Novel dopants for n-type doping of electron transport materials: cationic dyes and their bases

    Get PDF
    The history of silicon technology showed that controlled doping was a key step for the realization of e®ective, stable and reproducible devices. When the conduction type was no longer determined by impurities but could be controlled by doping, the breakthrough of classical microelectronics became possible. Unlike inorganic semiconductors, organic dyes are up to now usually prepared in a nominally undoped form. However, controlled and stable doping is desirable in many organic-based devices as well. If we succeed in shifting the Fermi level towards the transport states, this could reduce ohmic losses, ease carrier injection from contacts and increase the built-in potential of Schottky- or pn-junctions

    Novel dopants for n-type doping of electron transport materials: cationic dyes and their bases

    No full text
    The history of silicon technology showed that controlled doping was a key step for the realization of e®ective, stable and reproducible devices. When the conduction type was no longer determined by impurities but could be controlled by doping, the breakthrough of classical microelectronics became possible. Unlike inorganic semiconductors, organic dyes are up to now usually prepared in a nominally undoped form. However, controlled and stable doping is desirable in many organic-based devices as well. If we succeed in shifting the Fermi level towards the transport states, this could reduce ohmic losses, ease carrier injection from contacts and increase the built-in potential of Schottky- or pn-junctions

    Architecture and implementation of the biodiversity digital library

    No full text

    A Space Target Detection Method Based on Spatial–Temporal Local Registration in Complicated Backgrounds

    No full text
    Human space exploration has brought a growing crowded operating environment for in-orbit spacecraft. Monitoring the space environment and detecting space targets with photoelectric equipment has extensive and realistic significance in space safety. In this study, a local spatial–temporal registration (LSTR) method is proposed to detect moving small targets in space. Firstly, we applied the local region registration to estimate the neighbor background motion model. Secondly, we analyzed the temporal local grayscale difference between the strong clutter and target region and measured the temporal local–central region difference to enhance the target. Then, the temporal pixel contrast map was calculated, which further retains the target signal and suppresses the residue clutter. Finally, a simple adaptive threshold segmentation algorithm was applied to the saliency map to segment the targets. Comparative experiments were conducted on four groups of image sequences to validate the efficiency and robustness of the algorithm. The experimental findings indicate that the proposed method performs well in target enhancement and clutter suppression under different scenarios

    Characterization of the Ni/V(TCNE)x interface for hybrid spintronics applications

    No full text
    Vanadium tetracyanoethylene, V(TCNE)x, is an organic-based magnet with properties suitable for spintronics applications, e.g. spin valves. In this paper we propose a new hybrid organic spin valve design where V(TCNE)x is used as a spin-transporting and spin-filtering layer sandwiched between two ferromagnetic (FM) metal contacts, i.e. FM/V(TCNE)x/FM. As the spin injection and detection of such a device occurs at the interfaces the quality of those are of crucial importance. Therefore, the Ni/V(TCNE)x interface has been investigated by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption spectroscopy (NEXAFS) as well as compared with XPS results from a model system, Ni/TCNE. Ni chemically interact with both the vinyl and cyano groups but there is no evidence for significant diffusion of Ni into the V(TCNE)x film. As the chemical interaction affects the spin injection and detection negatively by modifying the lowest unoccupied molecular orbital (LUMO) and destroying the magnetic ordering network at the surface, these results indicate that there is need for a buffer layer between V(TCNE)x and Ni, and in extension most likely between V(TCNE)x and any FM contact.Original Publication: Elin Carlegrim, Yiqiang Zhan, Fenghong Li, Xianjie Liu and Mats Fahlman, Characterization of the Ni/V(TCNE)x interface for hybrid spintronics applications, 2010, Organic electronics, (11), 6, 1020-1024. http://dx.doi.org/10.1016/j.orgel.2010.03.001 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/</p
    corecore