659 research outputs found

    Quantum spin Hall effect induced by nonmagnetic and magnetic staggered potentials

    Get PDF
    We conducted a comparative study of the quantum spin Hall (QSH) effects induced by nonmagnetic and magnetic staggered potentials, respectively, and show that they have the same effect in driving the topological phase transition. The result implies that both time-reversal (T) preserving and breaking systems can host a QSH effect. We also investigate the stability of the resulting QSH effect for disorder and find that, for T invariant systems, the edge states are always robust while those of the T breaking system are also robust if there is additional symmetry in the system. © 2011 American Physical Society.published_or_final_versio

    Document image retrieval based on density distribution feature and key block feature

    Full text link
    Document image retrieval is an important part of many document image processing systems such as paperless office systems, digital libraries and so on. Its task is to help users find out the most similar document images from a document image database. For developing a System of document image retrieval among different resolutions, different formats document images with hybrid characters of multiple languages,. a new retrieval method based on document image density distribution features and key block features is proposed in this paper. Firstly, the density distribution and key block features of a document image are defined and extracted based on documents' print-core. Secondly, the candidate document images are attained based on the density distribution features. Thirdly, to improve reliability of the retrieval results, a confirmation procedure using key block features is applied to those candidates. Experimental results on a large scale document image database, which contains 10385 document images, show that the proposed method is efficient and robust to retrieve different kinds of document images in real time.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000232022600204&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Artificial IntelligenceComputer Science, Information SystemsCPCI-S(ISTP)

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Processing and characterization of chitosan microspheres to be used as templates for layer-by-layer assembly

    Get PDF
    Chitosan (Ch) microspheres have been developed by precipitation method, cross-linked with glutaraldehyde and used as a template for layer-by-layer (LBL) deposition of two natural polyelectrolytes. Using a LBL methodology, Ch microspheres were alternately coated with hyaluronic acid (HA) and Ch under mild conditions. The roughness of the Ch-based crosslinked microspheres was characterized by atomic force microscopy (AFM). Morphological characterization was performed by environmental scanning electron microscopy (ESEM), scanning electron microscopy (SEM) and stereolight microscopy. The swelling behaviour of the microspheres demonstrated that the ones with more bilayers presented the highest water uptake and the uncoated cross-linked Ch microspheres showed the lowest uptake capability. Microspheres presented spherical shape with sizes ranging from 510 to 840 lm. ESEM demonstrated that a rougher surface with voids is formed in multilayered microspheres caused by the irregular stacking of the layers. A short term mechanical stability assay was also performed, showing that the LBL procedure with more than five bilayers of HA/Ch over Ch cross-linked microspheres provide higher mechanical stability

    Classic yin and yang tonic formula for osteopenia: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoporosis is a growing worldwide problem, with the greatest burden resulting from fractures. Nevertheless, the majority of fractures in adults occur in those with "osteopenia" (bone mineral density (BMD) only moderately lower than young normal individuals). Since long-term drug therapy is an expensive option with uncertain consequences and side effects, natural herbal therapy offers an attractive alternative. The purpose of this study is to evaluate the effect on BMD and safety of the Classic Yin and Yang Tonic Formula for treatment of osteopenia and to investigate the mechanism by which this efficacy is achieved.</p> <p>Methods/design</p> <p>We propose a multicenter double-blind randomized placebo-controlled trial to evaluate the efficacy and safety of the Classic Yin and Yang Tonic Formula for the treatment of osteopenia. Participants aged 55 to 75 with low bone mineral density (T-score between -1 and -2.5) and kidney deficiency in TCM will be included and randomly allocated into two groups: treatment group and control group. Participants in the treatment group will be treated with Classic Yin and Yang Tonic Granule, while the controlled group will receive placebo. Primary outcome measure will be BMD of the lumbar spine and proximal femur using dual-energy X-ray absorptiometry. Secondary outcomes will include pain intensity measured with visual analogue scales, quality of life, serum markers of bone metabolism, indices of Neuro-endocrino-immune network and safety.</p> <p>Discussion</p> <p>If the Classic Yin and Yang Tonic Formula can increase bone mass without adverse effects, it may be a novel strategy for the treatment of osteoporosis. Furthermore, the mechanism of the Chinese medical formula for osteoporosis will be partially elucidated.</p> <p>Trial registration</p> <p>This study is registered at ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01271647">NCT01271647</a>.</p

    Multidimensional chemical control of CRISPR–Cas9

    Get PDF
    Cas9-based technologies have transformed genome engineering and the interrogation of genomic functions, but methods to control such technologies across numerous dimensions-including dose, time, specificity, and mutually exclusive modulation of multiple genes-are still lacking. We conferred such multidimensional controls to diverse Cas9 systems by leveraging small-molecule-regulated protein degron domains. Application of our strategy to both Cas9-mediated genome editing and transcriptional activities opens new avenues for systematic genome interrogation

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Relationship between Neural Alteration and Perineural Invasion in Pancreatic Cancer Patients with Hyperglycemia

    Get PDF
    Background: Patients with higher levels of fasting serum glucose have higher death rates from pancreatic cancer compared to patients with lower levels of fasting serum glucose. However, the reasons have not been studied. The goal of the current study was to examine the neural alterations in pancreatic cancer patients with hyperglycemia and to identify the relationship between the neural alterations and perineural invasion. Methodology/Principal Findings: The clinical and pathological features of 61 formalin-fixed pancreatic cancer specimens and 10 normal pancreases as controls were analyzed. Furthermore, the expression of Protein Gene Product 9.5 (PGP9.5), Myelin P0 protein (MPP), NGF, TrkA, and p75 were examined by immunohistochemistry. The median number of nerves, the median area of neural tissue, and the median nerve diameter per 10 mm 2 were larger in the hyperglycemia group than those in the euglycemia group (p = 0.007, p = 0.009, and p = 0.004, respectively). The integrated optical density (IOD) of MPP staining was lower in the hyperglycemia group than those in the euglycemia group (p = 0.019), while the expression levels of NGF and p75 were higher in the hyperglycemia group than those in the euglycemia group (p = 0.002, and p = 0.026, respectively). The nerve bundle invasion of pancreatic cancer was more frequent in the hyperglycemia group than in the euglycemia group (p = 0.000). Conclusions/Significance: Nerve damage and regeneration occur simultaneously in the tumor microenvironment o

    Manipulation of an Innate Escape Response in Drosophila: Photoexcitation of acj6 Neurons Induces the Escape Response

    Get PDF
    Background: The genetic analysis of behavior in Drosophila melanogaster has linked genes controlling neuronal connectivity and physiology to specific neuronal circuits underlying a variety of innate behaviors. We investigated the circuitry underlying the adult startle response, using photoexcitation of neurons that produce the abnormal chemosensory jump 6 (acj6) transcription factor. This transcription factor has previously been shown to play a role in neuronal pathfinding and neurotransmitter modality, but the role of acj6 neurons in the adult startle response was largely unknown. Principal Findings: We show that the activity of these neurons is necessary for a wild-type startle response and that excitation is sufficient to generate a synthetic escape response. Further, we show that this synthetic response is still sensitive to the dose of acj6 suggesting that that acj6 mutation alters neuronal activity as well as connectivity and neurotransmitter production. Results/Significance: These results extend the understanding of the role of acj6 and of the adult startle response in general. They also demonstrate the usefulness of activity-dependent characterization of neuronal circuits underlying innat
    corecore