10,930 research outputs found

    A perceptual quality metric for 3D triangle meshes based on spatial pooling

    Full text link
    © 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature. In computer graphics, various processing operations are applied to 3D triangle meshes and these processes often involve distortions, which affect the visual quality of surface geometry. In this context, perceptual quality assessment of 3D triangle meshes has become a crucial issue. In this paper, we propose a new objective quality metric for assessing the visual difference between a reference mesh and a corresponding distorted mesh. Our analysis indicates that the overall quality of a distorted mesh is sensitive to the distortion distribution. The proposed metric is based on a spatial pooling strategy and statistical descriptors of the distortion distribution. We generate a perceptual distortion map for vertices in the reference mesh while taking into account the visual masking effect of the human visual system. The proposed metric extracts statistical descriptors from the distortion map as the feature vector to represent the overall mesh quality. With the feature vector as input, we adopt a support vector regression model to predict the mesh quality score.We validate the performance of our method with three publicly available databases, and the comparison with state-of-the-art metrics demonstrates the superiority of our method. Experimental results show that our proposed method achieves a high correlation between objective assessment and subjective scores

    Through-Transmission Impedance Measurements on Moving Metallic Sheets

    Get PDF
    Eddy current measurement of electrical resistivity provides a method of sensing temperature during metals processing, thus offering a method of feedback control [1,2]. This method assumes a known resistivity-temperature relation for the alloy being processed. However, in many common processing configurations a measurement of the impedance of the coil system can depend on the velocity of the product being tested. In the through-transmission (abbreviated thru-trans) configuration for monitoring moving metallic sheets, the component of the exciting magnetic field normal to the sheet induces an electric field in the sheet transverse to the direction of the velocity. This modifies the induced current distribution and thus changes the shielding of the field at the receiver coil relative to the condition for the static case. This effect is significant even in the case of extruded aluminum moving at 150 ft/min. In high speed rolling, at 1000 ft/min or greater, the effect of velocity is even more significant

    An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing

    Get PDF
    Joint communication and radar sensing (JCR) represents an emerging research field aiming to integrate the above two functionalities into a single system, by sharing the majority of hardware, signal processing modules and, in a typical case, the transmitted signal. The close cooperation of the communication and sensing functions can enable significant improvement of spectrum efficiency, reduction of device size, cost and power consumption, and improvement of performance of both functions. Advanced signal processing techniques are critical for making the integration efficient, from transmission signal design to receiver processing. This paper provides a comprehensive overview of the state-of-the-art on JCR systems from the signal processing perspective. A balanced coverage on both transmitter and receiver is provided for three types of JCR systems, namely, communication-centric, radar-centric, and joint design and optimization

    More Three Dimensional Mirror Pairs

    Get PDF
    We found a lot of new three dimensional N = 4 mirror pairs generalizing previous considerations on three dimensional generalized quiver gauge theories. We recovered almost all previous discovered mirror pairs with these constructions. One side of these mirror pairs are always the conventional quiver gauge theories. One of our result can also be used to determine the matter content and weakly coupled gauge groups of four dimensional N = 2 generalized quiver gauge theories derived from six dimensional A_N and D_N theory, therefore we explicitly constructed four dimensional S-duality pairs.Comment: 33 pages, 18 figures version2 minor correction

    Size constancy in bat biosonar?

    Get PDF
    Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by G∘HG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of G∘HG \circ H, and get upper and lower bounds of λ3(G∘H)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    The Hilbert Series of the One Instanton Moduli Space

    Get PDF
    The moduli space of k G-instantons on R^4 for a classical gauge group G is known to be given by the Higgs branch of a supersymmetric gauge theory that lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3, these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be represented by quiver diagrams. The F and D term equations coincide with the ADHM construction. The Hilbert series of the moduli spaces of one instanton for classical gauge groups is easy to compute and turns out to take a particularly simple form which is previously unknown. This allows for a G invariant character expansion and hence easily generalisable for exceptional gauge groups, where an ADHM construction is not known. The conjectures for exceptional groups are further checked using some new techniques like sewing relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.Comment: 43 pages, 22 figure
    • …
    corecore