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1. Introduction

Last year, Gaiotto [1] found a large class of four dimensional (4d) N = 2 superconformal

field theories (SCFT) motivated by earlier remarkable observation on S-duality of certain

N = 2 SCFT [2]. These theories are derived by compactifying six dimensional (0, 2)

AN−1 theory on a Riemann surface with punctures. The S-duality group is realized as the

modular group of the Riemann surface. Different weakly coupled duality frames correspond

to different degeneration limits of this Riemann surface. The weakly coupled gauge groups

in each duality frame can be derived from the information encoded in the punctures.

In general, these generalized quiver gauge theories do not have conventional lagrangian

descriptions in any duality frame since the matter systems are usually strongly coupled.

It would be very helpful if we can find a lagrangian description in some sense for

those strongly coupled theories. Compactifying these theories down to three dimension

(3d) seems to be a good idea [3]. If we further compactify the theory on a circle and

flow to IR limit, we will get a fixed point with three dimensional N = 4 supersymmetry

(We call these theories A). Three dimensional N = 4 supersymmetric field theory has

SU(2)L × SU(2)R R symmetry. The moduli space of vacua of 3d theory has Coulomb

branch and Higgs branch. There is an interesting mirror symmetry for some of 3d N = 4
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theories discovered in middle nighties by Intriligator and Seiberg [4]. Mirror symmetry

states that given theory A, there is another theory B for which the Higgs branch is the

Coulomb branch of A and vice versa (We usually write the UV theory for B and simply

call it B, to find the mirror, we mean to find the UV theory B). The mirror theory does

not necessarily have a lagrangian description, for instance, the quiver gauge theory with

E type dynkin diagram shape do not have the lagrangian description as first discovered in

[4].

Surprisingly, it was found in [5] that all the generalized quiver gauge theory A have

the 3d mirror theory B which has the conventional lagrangian description: it is just a

star-shaped conventional quiver gauge theory. With this mirror, one can learn a lot about

the four dimensional theory, for instance, one can figure out the full flavor symmetry of

the theory A using the monopole operators of the mirror B, etc.

A purely field theory derivation for this result is also presented in [5]. The result is

nicely derived by representing three dimensional theory A as compactifying four dimen-

sional N = 4 Supersymmetric Yang-Mills (SYM) on a one dimensional graph. The graph

is just the dual graph of the punctured Riemann surface with the boundary conditions on

the external leg labeled by the same Young tableaux needed for four dimensional theory.

The internal leg represents the weakly coupled gauge groups. The mirror symmetry is just

the S-duality of N = 4 SYM on the graph. N = 4 SYM on the half space is extensively

studied in [6, 7]. It turns out that these constructions are very useful to derive new mirror

pairs.

In this paper, we will generalize the construction in [5] and find a lot of new mirror pairs.

With these new construction, we almost recover all the previously discovered examples of

mirror pairs [8, 9, 10, 11, 12, 13, 14].

The theory A considered in [5] is conformal in four dimension. The first generalization

is to add fundamentals to each weakly coupled gauge group to form theory Ã(in this paper,

we use Ã to refer the new theory based on A, and likewise use B̃ for the mirror of Ã). It

is natural to consider those theories in three dimensions though in four dimension those

theories are not asymptotical free.

We add “D5” branes on the internal leg of the graph representation of A and find the

mirror of the graph by simply do S-duality and turn the “D5” branes to “NS5” brane.

The problem is that the IR limit of the graph representation is not the same as Ã, we find

a way to extract the mirror theory B̃ from the graph mirror. The mirrors are different

for different weakly coupled descriptions of the generalized quiver gauge theory, this is in

contrast with the conformal case for which the mirror is independent of the duality frame.

The mirror theory B̃ can be used to probe theory A, since B̃ depends on the duality

frames of 4d theory. For example, we can read the weakly coupled gauge groups in different

duality frames by counting the change of Coulomb branch dimension of B̃ with respect to

B. The number of fundamentals on the gauge group can also be determined by finding out

the change of the symmetry on the Coulomb branch of B̃ with respect to B. The results for

AN−1 theory are in agreement with the other methods [15]. This is particularly useful for

the theory derived from 6d DN theory for which no method determining the weakly coupled

gauge groups has found yet. One can also completely determine the matter contents in
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each duality frame.

The second generalization is to gauge some of the U(1) flavor symmetries of the theory

A to get theory Ã, the mirror can be found by counting the change of the Higgs and

Coulomb branch dimensions: we only need to ungauge the U(1) gauge groups in the

mirror.

The above mirror theory has the quiver tail without any fundamentals. The third

generalization is to change the boundary condition of the graph so the mirror has a general

quiver tail. A large class of boundary 3d SCFT and its mirror are found in [7], we can use

their results to construct mirror pairs Ã and B̃ so that B̃ has more general quiver tails.

Finally, we consider four dimensional theory derived from putting irregular singularities

on the Riemann sphere [16]. The mirror of the three dimensional cousin is quite interesting

and is very useful for studying the four dimensional theory. The mirror is also a quiver

gauge theory but with more exotic shapes and more than one bi-fundamentals connecting

the quiver nodes.

This paper is organized as follows: In section 2, we summarize the results in [5];

In section 3, we add more fundamentals on theory A reviewed in section 2, the unitary

quiver and orthosymplectic quiver (quiver with alternative orthogonal and symplectic gauge

groups) are both discussed, we also discuss how to use this result to probe four dimensional

generalized quiver gauge theory; Section 4 discusses how to find the mirror if we gauge the

U(1) flavor symmetry of theory A; In section 5, the boundary conditions are changed so that

we can have general quiver tails in the mirror; In section 6, we consider four dimensional

theory derived from 6d theory on a Riemann sphere with irregular singularities, the mirror

theory for 3d cousin is also a quiver gauge theory but with exotic shape. We conclude in

section 7 by giving some further directions.

2. Review

Three dimensional N = 4 gauge theory has SU(2)L × SU(2)R R symmetry. This can be

seen from the compactification of 6d N = 1 theory: SU(2)R is the R symmetry of the 6d

theory while SU(2)L symmetry comes from the rotation group of the three dimensional

space on which we do the reduction. The moduli space of the vacua has Coulomb branch

and Higgs branch (we also have the mixed branch). The Higgs branch is a Hyperkahler

manifold whose Kahler form transforms under SU(2)R and invariant under the SU(2)L.

There usually are global symmetries acting on Higgs branch, when we have a lagrangian

description, the global symmetry can be read readily, we can turn on mass terms and

preserve N = 4 supersymmetry. The Coulomb branch is also a Hyperkahler manifold

whose kahler form transforms under SU(2)L and invariant under SU(2)R. Usually there is

only a U(1) global symmetry arising from the shift symmetry of the photon, but sometimes

the symmetry is enhanced due to monopole operators [17, 7]; if there are U(1) factors in

gauge group, we can turn on Fayet-lliopoulos (FI) terms and preserve the same number of

supersymmetry. For some theories, the Higgs branch and Coulomb branch intersects at a

single point, and there is an interacting SCFT on which both SU(2)L and SU(2)R acts.

This SCFT is the IR fixed point under the RG flow of the theory.
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Suppose we have two three dimensional N = 4 theory A and B, and both theories

flow to non-trivial IR fixed points A and B. We say they are mirror pairs if the Higgs

branch of A is identical to the Coulomb branch of B and vice versa [4]. The mass terms are

identified with the FI terms under mirror symmetry. Since Coulomb branch gets quantum

corrections and Higgs branch has the non-renormalization property and is exact by doing

classical calculation, the quantum effects of one theory is captured by classical effects of

another theory. The IR fixed points are usually strongly coupled, we mainly use the UV

theory A and B to learn their IR behavior and simply states the theory A and B are mirror

pairs.

In [5], a large class of mirror pairs are found. Theory A arises from compactifying

4d N = 2 SCFT theory found in [1] on a circle; Theory B is a star-shaped quiver. Four

dimensional theory is realized as compactifying six dimensional (0, 2) theory on a Riemann

surface Σ with punctures which are classified by Young tableaux [1, 18]. The Hitchin’s

equation defined on Riemann surface is the BPS equation and whose moduli space with

specified boundary condition at the puncture is the Coulomb branch of the three dimen-

sional theory. The boundary condition of the Hitchin’s equation is a regular singularity

for this class of theories. The Hitchin’s moduli space can be approximately by a quiver as

discovered by Boalch [19], it turns out that this quiver is the mirror quiver for the theory

A. We only consider those theories for which the Hitchin’s system is irreducible [15]. In

physics language, this means that the quiver gauge theory has a dimension N operators in

the Coulomb branch.

In general, we can not write a lagrangian description for the theory; The weakly

coupled gauge group and flavor symmetries can be determined using the information on the

puncture [1, 15] , we also know the flavor symmetry. These theories and its generalization

are further studied in [20, 21, 22, 23, 24, 25, 26, 28, 29]. Various S-duality frames of

4d theory are identified with the different degeneration limits of the punctured Riemann

surface.

We further compactify theory A on a circle S and get a 3d N = 4 theory. The compact

space is Σ× S. We can model each leg in pants decomposition of the punctured Riemann

surface as a cylinder S1 × I, then the three dimensional space we do the reduction on this

leg is (S1×I)×S. We can change the order of compactification and regard the three space

as (S1 × S) × I: in first step, we get a 4d N = 4 SU(N) SYM and we assume that the

boundary condition at the ends of I is classified by the same Young tableaux. This fact

can be seen from the following argument: the Hitchin’s equation around the singularity is

identified with the Nahm’s equation with specified singular boundary condition, which is

exactly the equation governing the boundary condition for N = 4 SU(N) SYM on the half

space. In this order of compactification, 3d theories are represented as 4d N = 4 SYM

on a one dimensional graph. In fact, the graph is just the dual graph of the punctured

Riemann surface as described in [15], it is a trivalent graph with lots of three junctions.

With this graph representation of the theory A, the mirror symmetry is understood

as the S duality of the N = 4 on the graph. The S duality of N = 4 SYM on half space

has been studied in full detail in [6, 7], in particular, the dual of the boundary condition

we discussed earlier is worked out. The mirror of each boundary condition is a quiver leg.
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a)
1 1
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1 1
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Figure 1: (a)One S-duality frame for four dimensional N = 2 SU(2) with four fundamentals, each

puncture carries a SU(2) flavor symmetry. (b) Three dimensional version of (a), which is derived

by compactifying (a) on a circle. we represent it as N = 4 SYM on the graph. (c)The graph mirror

of (b), which is simply derived by gluing the SU(2) flavor symmetry of four quiver tails.

For example, if the Young tableaux has heights [h1, h2, ...hr ] with h1 ≥ h2 ≥ ... ≥ hr, then

the mirror quiver leg is

N − U(n1)− U(n2)− .... − U(nr−1) (2.1)

where ni =
∑r

i+1 hj , and the first N means we have a global SU(N) flavor symmetry.

The S-dual of the three junctions is worked out in [5], it is simply the diagonal part

of three SU(N) gauge groups on the legs connecting with the junction. By combining

various components, the mirror theory is just a star-shaped quiver with a SU(N) node at

the center. In another word, we simply gauge together the SU(N) node of each leg. It is

interesting to note that the mirror does not depend on the pants decomposition.

Let’s give an example to illustrate the main idea. Consider four dimensional N = 2

SU(2) gauge theory with four fundamentals. It is derived from six dimensional theory on

a Riemann sphere with four punctures. One of the pants decomposition is described in

fig. 1(a). The graph representation of 3d theory is shown in fig. 1(b). The internal leg

represents the SU(2) gauge group. The Young tableaux of the boundary condition has the

heights [1, 1], the mirror of this boundary condition is a quiver tail 2−U(1), after gauging

the common SU(2) node, we found the mirror in fig. 1(c).

We can extend the above analysis to DN theory [20, 5]. Since the four dimensional

gauge theory involves not only SO group but also USp group, we need to turn on the z2

monodromy line. In the pants decomposition, if there is a monodromy around the circle

S1, then the gauge group on that leg would be SO(2N + 1). To get a three dimensional

theory, we further compactify the theory on S. To represent the theory as N = 4 SYM

on the graph, we change the order of compactification, we first compactify six dimensional

theory on S × S1, the four dimensional gauge group is USp(2N − 2) which is the S dual

of the theory derived from S1 × S, the boundary condition at the ends should be given by

the Young tableaux of USp(2N − 2) which is exactly the case as found in [20]. There are

two types of junctions: the first type is the one for which there is no USp leg while the
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second type has two USp legs. The S-dual of the boundary condition of SO group and

USp group has been also studied in [7]. The S-dual of two different junctions are worked

out in [5]: the dual is the diagonal SO(2N) group for the first type of junction while the

S-dual of the second type is a diagonal USp(2N − 2) group. The dual of the boundary

conditions are also worked out explicitly in [5].

3. Adding more fundamentals

3.1 AN−1 Theory

3.1.1 Genus 0 theory

The theories studied in [5] is superconformal in the four dimensional sense. It is interesting

to extend to the non-conformal cases, i.e. those theories with more fundamentals on the

weakly coupled gauge group(we call them theory Ã). We will use the graph representation

of the three dimensional theory we reviewed in last section. Before doing that, we want to

introduce some important concepts on 3d quiver gauge theories.

Since the IR theory we want to study is usually strongly coupled, we hope we can learn

some of its property from the UV theory, this is not always possible, for instance, there

might be accidental R symmetry in the IR which is not the same R symmetry in the UV.

Consider 3d N = 4 SU(Nc) theory with Nf fundamentals, let’s define the excess number

of it:

e = Nf − 2Nc. (3.1)

This theory is called “good” if e ≥ 0, “ugly” if e = −1, “bad” if e < −1. For the “good”

theory, there is a standard critical points and the IR R symmetry is just the R symmetry in

the UV theory. For the “ugly” theory, the IR limit is just a set of free hypermultiplets. For

the “bad” theory, the IR limit is not a standard critical point and the R symmetry might

be accidental symmetry. For the ”good” theory, the theory can be completely higgsed and

there is a pure Higgs branch, we can learn a lot about the IR limit from the UV theory.

We mainly focused on the ”good” theory in this section. If e = 0, we call it a “balanced”

theory which has interesting property on the Coulomb branch.

The above definition can be extended to a quiver. We call a quiver “good” if ei ≥ 0 for

every node. The Coulomb branch symmetry is enhanced due to the monopole operators.

If we have a linear chain of balanced quiver with P nodes, i.e. ei = 0 for every node,

then the global symmetry on Coulomb branch is enhanced to SU(P + 1). If the balanced

quiver has the shape Dn or En type dynkin diagram, then the symmetry is enhanced to

the corresponding Dn or En group. The global symmetry for a general “good” quiver is

just the product of enhanced non-abelian symmetries and abelian U(1)s from non-balanced

nodes. This is useful since we can read the exact global symmetry of Higgs branch of the

theory A using the mirror. For instance, for the theory SU(2) with four fundamentals,

the flavor symmetry is SO(8). In the Gaiotto’s representation in fig. 1(a), only SU(2)4

subgroup is manifest, while we can see the full SO(8) symmetry in the Coulomb branch

of the mirror using monopole operators. This example might be trivial since we have a
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N N

a) b)

NN

Figure 2: (a) The addition of a “D5” brane to the internal leg of the graph. (b)Its mirror.

lagrangian description for A, but for other strongly coupled theory, the mirror theory is

very useful to see full flavor symmetries.

For the irreducible theory A we considered in this paper, the mirror B is always good as

one can check. Now let’s consider theory Ã which is derived by adding more fundamentals

to the gauge groups of the theory A considered in [5], the mirror B̃ should also be a good

quiver. There is a graph representation for A as we reviewed in last section, the gauge

groups are represented as the internal legs. To add fundamentals, it is natural to think

adding some “D5” branes on the internal leg. This is really a Type IIB language, let’s go

back to Type IIA or M theory language and the new system can be similarly realized as the

six dimensional construction 1. In the weakly coupled limit, the long tube region is locally

as a manifold S1× I×S×R3 as reviewed in last section, adding more fundamental in type

IIA language means adding more D6 branes in Witten’s brane construction, in lifting to

M theory, D6 branes becomes Taub-Nut space, so the three dimensional theory is realized

as M5 branes compactified on a punctured Riemann surface in Taub-Nut space and then

further compactified on a circle. However, we find the type IIB language is more useful in

finding 3d mirror since one can use the knowledge of field theory.

There is one important question: Is the IR limit of N = 4 SYM on the graph the

same as the IR limit of theory Ã? In general the answer is not: there are some free

hypermultiplets in the IR besides the fix point theory of Ã. This can be seen from the

mirror of the graph. The graph mirror is in general a “bad” quiver.

The mirror of the graph is simple, the S-dual of the “D5” branes are “NS” brane.

From the gauge theory point of view, there are now two U(N) gauge groups connected by

a bi-fundamental, see fig. 2. In general, the graph mirror is “bad” which reflects the fact

the IR limit of the graph does not coincides with the IR limit of theory Ã. We want to

extract the mirror B̃ from the graph mirror.

The process we suggest is the following: for any “bad” or “ugly” node on the graph

mirror with the excess number ei < 0, we replace its rank by

n
′

i = ni + ei = Nf −Nc, (3.2)

then the excess number of the quiver nodes around it will also be changed, if there are still

some “bad” nodes, we will do the same manipulation on those nodes. We continue doing

1We thank referee of raising this question.
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N N

n1

nj

a)

b)

N N
′

c

n1

nj

m1

m1

Figure 3: (a) The naive mirror for adding one fundamental to one of weakly coupled gauge group;

We assume that the left central node is bad. (b)We replace the rank of the left central node with

N
′

c = Nf −N =
∑j

k=1 nk.

this until all the nodes are “good”, the resulting theory is the mirror B̃ for the theory Ã

(The overall U(1) of B̃ is decoupled and we do not include this factor in counting the Higgs

and Coulomb branch).

The theory B̃ should have the same Higgs branch as the star-shaped quiver B. Since

theory Ã has the same Coulomb branch dimension as A. The graph mirror has the same

Higgs branch as B as we can easily count: we add one bi-fundamental and one U(N) node,

the net contribution to Higgs branch is zero. The graph mirror has two central nodes, and

the only possible “bad” node is one of the central node, See fig. 3. for the illustration. The

contribution of this central node to the Higgs branch is

NfNc −N2
c = Nc(Nf −Nc). (3.3)

This number is unchanged if we change the rank of the gauge group to N
′

c = Nf −Nc and

keep Nf unchanged. The number N
′

c = Nc +Nf − 2Nc = Nc + e which is just the number

we defined earlier. N
′

c should be less or equal than N , so we can only do the manipulation

for those quiver node with e < 0.

We want to point out some generic features of the manipulation. As we noticed earlier,

only one of the central node can be “bad” for the graph mirror, the excess number of it

is e < 0. After changing its rank, its new excess number is −e. The excess number of

its adjacent nodes are increased by e. If none of those new excess numbers are negative,

then our manipulation stops, there is one more U(1) global symmetry on the Coulomb

branch from the new node. This reflects the fact there is an extra U(1) flavor symmetry

coming from the new added fundamental. It is possible some of the adjacent node becomes

“balanced” and therefore we have enhanced symmetry, however we can only have one new

“balanced” adjacent node with just one exception. We order the rank of the adjacent nodes
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so that n1 ≤ n2 ≤ ... ≤ nj , so

e
′

i ≥

j∑

k=1

nk − 2ni, (3.4)

e
′

i ≥ 0 for any i ≥ 3. e2 ≥ 0, it is zero only when there are only two identical quiver

tails with Young tableaux [N − n1, n1]. This is consistent since after adding only one

fundamental, the flavor symmetry can only be changed from SU(k) to SU(k + 1) or from

SO(k + 2) to SO(2k + 2) (this is for the USp group).

It is possible that n1 node becomes “bad” after we change the rank of the central node.

We will focus on this quiver tail. The excess number of each node on this quiver tail can

be read from the Young tableaux:

ei = ni+1 + ni−1 − 2ni =
r∑

j=i+2

hj +
r∑

j=i

hj − 2
r∑

j=i+1

hj = hi − hi+1, (3.5)

we take hr+1 = 0 (here we use i to denote the node on this particular quiver tail and ni as

its rank), the excess number is non-negative as from the definition of the Young tableaux.

It is a several chains of balanced quiver separated by the “good” quiver nodes.

After changing the rank of this node, the new excess number of the central number is

e
′

c = e1 which is positive. The excess number of the n1 is e
′

1 = −e1 − e. The new excess

number of other adjacent node n2 is e
′

2 = e1 + e2 + e, if this number is non-negative, then

our process stops. If not, we continue the process, the excess number of the first node

changed to e2 though. We only need to do one manipulation on each possible node. The

general conclusion is that the process stops at the jth node on the quiver tail with the

condition

e1 + e2 + ...ej + e ≥ 0, e1 + e2 + ..ej−1 + e < 0. (3.6)

In particular, the structure of the balanced chain is not changed. The final form of the

quiver with its rank and excess number is shown in fig. 18. No new rank number is zero

or negative, since

n
′

i = ni+e+e1+ ...ei = ni+h1−hi+1+e > ni+h1−hi+1+n1−N = ni−hi+1 > 0. (3.7)

This ensures that no quiver node disappears. The structure of the new quiver shows that

there is a extra U(1) on the symmetry of the Coulomb branch, which is exactly what we

want.

For four dimensional theory, the gauge group contents depend on the pants decompo-

sition of the Riemann surface; To add fundamentals to the gauge group, we must specific

the pants decomposition. Go to three dimensions, the mirror is obviously different for dif-

ferent pant decomposition, which is in contrast with conformal case for which the mirror is

independent of pants decomposition. This allows us to determine different duality frames

of 4d SCFT as we will see later.

Let’s give an example to illustrate our main idea. The four dimensional theory is the

original example studied by Argyres-Seiberg [2], in one weakly coupled duality frame A1, it

is just a SU(3) theory with six fundamentals; In another duality frame A2, there is a weakly
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n1 Nnj−2nj−1njnj+1

ee1ej−2ej−1ejej+1

nj+1 nj n
′

j−1 n
′

j−2 n
′

1
n

ej+1 e
′

j e
′

j−1
ej−1 e2 e1

a)

b)

Figure 4: (a) The rank and excess number of a quiver tail associated with a central node, we

assume that e+ e1 < 0 for this quiver tail. (b)The rank and excess number of the quiver tail after

the manipulation is finished. It stops at the jth node, from the condition, we have ej > 0, this

shows that no balanced node is lost, and they balanced chain is not altered. The new excess number

is e
′

j−1 = −(e + e1 + e2 + ...ej−1) > 0, e
′

j = e + e1 + e2 + ...ej ≥ 0, so it is only possible for one

more balanced node to appear. If a new balanced node appears, it shows that there are already

fundamentals exist; The new rank is n
′

i = ni + e+ e1 + ...ei.

coupled SU(2) gauge group coupled with one fundamental and E6 strongly coupled theory.

The S-duality can be understood from the six dimensional construction. See fig. 5 for the

pants decomposition and the graph representation for the corresponding three dimensional

theory.

Now let’s add more fundamentals (say two as in fig. 6) to the gauge groups of the

above theories, namely, we now consider theories Ã1 and Ã2. To find their mirrors, we use

the graph representation of the conformal theories and add “D5” branes on the internal

leg, we apply the S-dual and find graph mirror. If the mirror quiver is “good”, then this

quiver is just the mirror of Ã; if the mirror is “bad”, this means that the IR limit of the

graph is not the same as the theory Ã, but we can do the manipulation as we described

earlier to find the mirror of Ã.

The graph representation and graph mirrors are shown in fig. 6. The simple puncture

is represented by the Young tableaux with heights [2, 1], the quiver tail to it is just 3−U(1);

The circle cross has partition [1, 1, 1], the quiver tail is 3 − U(2) − U(1). The mirror of

“D5” branes is to cut the gauge groups into two and introduce a bi-fundamental connecting

them.

The quiver in fig. 6(a) is “good”, so we conclude that the graph representation on the

left of fig. 6(a) has the same IR limit as the three dimensional SU(3) with 8 fundamentals,

and the graph mirror is just the mirror of theory Ã1, this is in agreement with the result

in [11].
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a)

b)

1 1

3

2

1

2

1

c)

Figure 5: (a)The weakly coupled duality frame with SU(3) gauge group on the left, there are

two type of punctures: the cross represents the simple puncture with Young tableaux [2, 1], the

circle cross represents the full puncture with tableaux [1, 1, 1]. The graph representation for three

dimensional theory is shown on the right. (b) The weakly coupled duality frame with SU(2) gauge

group on the left, graph representation for three dimensional theory on the right. (c) The mirror

for theory (a) and (b), they are identical.

The quiver in fig. 6(b) is “bad”: the SU(3) node on the left has excess number negative

1, so we replace it with a U(2) node, then the SU(3) node adjacent to it becomes “ugly”

with excess number negative 1, we also replace it with U(2). After doing this, we get a

”good” quiver as shown in fig. 6(c), this is the mirror for the theory Ã2.

Let’s do some check on our result. The theory Ã2 has the same Coulomb branch

dimension (we always mean the hyperkahler dimension in this paper) as A2 and the Higgs

branch dimension of Ã2 is increased by four. Comparing the quiver in fig. 6(c) with the

quiver in fig. 5(c), its Coulomb branch dimension is increased by 4 and Higgs branch

dimension is not changed. The flavor symmetry of Ã2 is SO(6) × SU(6). The SO(6) is

from three fundamentals while SU(6) is from E6 matter. In the fig. 6(c), on the left, we

have a linear chain of three balanced quiver and on the right we have a linear chain with

5 balanced quiver, so the symmetry on the Coulomb branch is SU(4) × SU(6) which is

the same as the symmetry on the Higgs branch of Ã2. (Notice the U(1) symmetry on the

middle U(2) node is decoupled).

In fact, we can use the “D5” brane as a probe to find out what is the weakly coupled

gauge group SU(k) (or USp(k) in some cases) for 4d SCFT by counting the change of

the Coulomb branch dimension of the mirror. Since for the theory Ã, the Higgs branch

is increased by k, if we know the change of Coulomb branch dimension of the mirror, we

can determine the weakly coupled gauge group. To determine whether it is a USp group

of SU group, we can see the enhanced symmetry on the Coulomb branch of the mirror. If

the mirror quiver has a balanced part with shape of Dn dynkin diagram, then the gauge
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1

1
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b)

1 2

1 2

1
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Figure 6: (a)On the left, we add two “D5” branes on the internal segment which represents a

SU(3) gauge group, on the right, we apply S-duality and get a good quiver. (b)We add two “D5”

branes on the SU(2) gauge group, the left-hand side is the mirror quiver which is bad, the left

central U(3) node is “bad”. (c)We replace the bad U(3) node with U(2), and then replace the

adjacent U(3) with U(2) node, the resulting quiver is “good”.

group is USp(k), otherwise the weakly coupled gauge group is SU(N). The weakly coupled

gauge group can also be determined using the degeneration limit in [15]. Here we use three

dimensional mirror symmetry to do the job. We describe one example in fig. 7 Comparing

the quiver in fig. 7(c) and fig. 7(a), the Coulomb branch dimension is increased by 4, since

the quiver does not have a balanced part with Dn dynkin diagram shape, the gauge group

is SU(4), this is in agreement with the result using the degeneration method as described

in [15]. A special case is if the graph mirror is a “good” quiver, then the gauge group is

SU(N) or USp(N) as the Coulomb branch of the mirror is increased by N .

We can also find out how many fundamentals on the gauge group for the four dimen-

sional conformal theory. Since if there are l fundamentals exists, after adding one more

fundamental, the global symmetry on Higgs branch is enhanced from U(l) to U(l + 1).

In the mirror, we can see the change of the global symmetry on Coulomb branch using

monopole operators, and we can determine k. In the quiver of fig. 7(a), the global symmetry

on Coulomb branch is SU(6)×U(1)×SU(2); For the quiver in fig. 7(c), the symmetry on

Coulomb branch is SU(6)×SU(2)×U(1)×SU(2), we see the global symmetry is changed

from U(1) to U(2), so originally we have only 1 fundamental. This is also in agreement

with the result in [15].

There is another application of our procedure of extracting irreducible theory from
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Figure 7: (a)A generalized quiver gauge theory A in three dimensions, its graph representation is

depicted on the left, we draw Young tableaux for the boundary condition, its mirror is depicted on

the right. (b)We add one “D5” branes on internal leg of the graph in (a), the mirror of the graph

is shown on the right. (c)The mirror of the theory Ã which has one more fundamental than A.

“bad” quiver. We consider four dimensional irreducible theory up to now. For the re-

ducible theory, the three dimensional mirror is “bad”, which means that there are free

hypermultiplets besides the SCFT, those SCFT are actually represented irreducibly by

lower rank six dimensional (0, 2) theory. We hope to extract the free hypermultiplets and

the irreducible SCFT from the 3d mirror using the surgery of the naive mirror. However,

there is one point we want to clarify 2. The rational for us to do the surgery is that the

original theory has two parts A+free, where A is a theory with non-zero Coulomb branch,

the naive mirror B is the mirror for A + free. Obviously, the Higgs branch of B should

be the same as the Coulomb branch of A, our surgery ensures that the Higgs branch of

the new quiver after the surgery has the same dimension as B. Finally, by comparing

the Coulomb branch of B and B
′

, we can find the number of free hypermultiplets in the

2We thank referee point out this issue and this motivates the following discussion.
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Figure 8: (a) A four dimensional theory is derived by compactifying six dimensional A4 theory on

a sphere with four punctures, the Young tableaux of the punctures are depicted, its 3d mirror can

be found from the information in the puncture, it is a bad quiver, the central node has negative

excess number. (b) For the bad node, we change its rank using the formula N
′

c = Nc + e, after this

modification, the excess number of the quiver nodes around the central are also changed and they

are “bad”, we do the modification on those nodes too, at the end, we get a “good” quiver, this

quiver is the same as the quiver depicted in figure 4.

original theory.

The above surgery works well if the original theory has non-trivial Coulomb branch

which is the case we considered so far. However, there are some theories A for which there

is no Coulomb branch for example a sphere with three simple punctures, in this case, the

number of free hypermultiplets are just the Coulomb branch dimension of the naive mirror.

To check whether a theory has only free hypermultiplets, we do the surgery on the naive

mirror, and at some stage, the rank of gauge group after the surgery will be negative.

Those reducible theories have been considered in [28], our method gives another simple

way to study them. For instance, consider A4 theory on a sphere with four punctures

which are labeled as [4, 1], [4, 1], [1, 1, 1, 1], [2, 2, 1] (This is the first example in the appendix

of [28]). The 3d mirror of this theory is depicted in fig. 8(a), it is a bad quiver, so we do

the modification to the rank of the bad quiver node, finally, we get a good quiver which is

depicted in fig. 8(b). One can recognize that this good quiver is the same as the quiver in

fig. 5, so we can conclude that this is the SCFT part of the theory. Comparing the quiver

in fig. 8(a) and fig. 8(b), the Coulomb branch is decreased by 10. So we conclude that the

theory composes of a SCFT as described in fig. 8 and 10 free hypermultiplets. This is in

agreement with the result in [28].

Let’s go back to four dimensional N = 2 generalized quiver gauge theory. We have

shown how to determine the weakly coupled gauge group and the number of fundamentals

on it by using the “D5” brane probe. However, there are other strongly coupled matter

systems coupled with the gauge group, we want to determine them. Let’s follow the

procedure in [15]: the weakly coupled gauge group corresponds to the long tube of the

Riemann surface; we first consider the gauge group at the end of the quiver and completely
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123N
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d)
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p

Figure 9: (a) A four dimensional N = 2 generalized quiver gauge theory is derived from six

dimension (0, 2) SU(N) SCFT on this punctured sphere, the gauge group is represented by a

long tube; We show one weakly coupled gauge group at the end of the quiver; After completely

decoupling the gauge group, the Riemann surface becomes into two parts Σ1 and Σ2, we put a full

puncture at the new formed three punctured sphere. There is a new puncture p on Σ2. (b) The

3d mirror for three punctured sphere. (c) If the mirror in (b) is “bad”, we change the rank of the

“bad” nodes and get a “good” quiver, we assume that n1 and n2 nodes are “good”. (d) The mirror

quiver tail for the puncture p for the case (c).

decouple this gauge group, two new punctures appear, the Riemann surface are decomposed

into two parts: a three punctured sphere Σ1 and another sphere Σ2 with a lot of punctures,

see fig. 9(a). The information of the matter system can be read from the three punctured

sphere, we also want to determine what is the new puncture p on Σ2. In [15], we assume

that the two new appearing punctures are identical and find the new puncture by counting

the Coulomb branch dimension. Motivated by our study of mirror symmetry in this paper,

we follow a different approach, we assume the new puncture on Σ1 is always the maximal

puncture.

We extract the matter information by looking at the 3d mirror of the three punctured

sphere B, see fig. 9(b) , If the mirror is “good”, then the matter system is just a strongly

coupled isolated SCFT and the puncture p is just the maximal puncture. The weakly

coupled gauge group is just SU(N) as we have shown earlier. If the mirror quiver is “bad”,

we can still extract the matter information by doing the manipulation we have used to

find the mirror for the theory with more fundamentals. There are several situations we

need to consider. The first situation is that after changing the rank of the central node

to n1 + n2 − 1, the n1 and n2 nodes are “balanced” or “good”, in this case, the resulting

quiver M3 is shown in fig. 9(c). This is the matter coupled to the gauge group. The quiver

tail for the new puncture p is shown in fig. 9(d). There are some checks on our result.
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Figure 10: (a)The graph representation of N = 2 SU(N) with an adjoint is depicted on the left,

the mirror theory is depicted on the right, the loop attached on SU(N) is the adjoint of SU(N).

(b)On the left, we add one more fundamental to theory a); There is a cross on the adjoint which

means that here is the adjoint on U(N), also the central node is U(N) group. (c)We add two

fundamentals to theory a); The mirror is depicted on the right, no U(1) is projected out.

The weakly coupled gauge group is SU(n1+n2) from our previous analysis; For the quiver

fig. 9(d), there is indeed a chain of n1 + n2 − 1 “balanced” nodes which has an enhanced

SU(n1 +n2) symmetry on Coulomb branch. The original quiver is formed by gauging this

global symmetry and the SU(n1 + n2) symmetry of the quiver p. Another serious check is

to compare the Coulomb branch and Higgs branch dimension of the decomposed system

and generalized quiver, they are in agreement with each other (the calculation is the same

as we have done in [15], though a little bit tedious).

The other cases are more complicated. One usually have both free fundamental hyper-

multiplets and strongly coupled matter system. We already know how to see fundamentals,

using the above method one can also extract the strongly coupled matter system.

3.1.2 Higher genus theory

Let’s next consider the theory associated with the higher genus Riemann surface. The

theory A is a generalized quiver gauge theory and the mirror theory B has adjoint matter

attached to the central SU(N) node. There is no complete Higgs branch for the A theory:
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for genus g theory, there are g(N−1) free U(1) vector hypermultiplets in the Higgs branch.

So the dimension of the “Higgs” branch is equal to the number of hypermultiplets minus

the vector multiplets, and then plus g(N − 1). Let’s consider genus one Riemann surface

with just one simple puncture, the graph and the mirror is shown in fig. 10(a). This is just

4d N = 2∗ SU(N) theory, one should be a little bit careful here, the adjoint matter has

dimension N2. One can check that the Coulomb branch and Higgs branch dimensions of

A and B matches by counting the dimension of “Higgs” branch of A by including the free

U(1) vector multiplets.

There are three types of internal legs for the higher genus theory in the dual graph.

For the first one, when we cut it, the number of loops of the graph is not changed. When

we cut the second type of internal legs, the graph becomes two disconnected parts with

loops; when we cut the third type of internal legs, there is only one part left and its number

of loops is reduced by 1. When we add more fundamentals to the first two types of internal

legs, the procedure of finding the mirror is the same as the genus zero case. In particular,

for the second type of internal legs, the gauge group must be SU(N), adding a fundamental

just introduces another U(N) group and a bi-fundamental.

For the third type of internal legs, there is a subtle point when we add just one

fundamentals. Consider the example in fig. 10, we add a “D5” brane on the internal leg as

depicted in fig. 10(b). Do S-dual on the graph, the “D5” brane becomes a “NS5” brane,

which cuts the original U(N) group into two U(N) groups, however, these two U(N) groups

are connected by a single junction which must be a single U(N) since in the mirror only

the diagonal part of the junction is survived. The mirror has just one U(N) node. We

need one modification: we replace the adjoint of SU(N) with adjoint of U(N), and we let

the central node be U(N) instead of SU(N). See fig. 10(b) for the mirrors.

Let’s compare the Coulomb branch and Higgs branch dimension of theory Ã and B̃.

Now the Higgs branch of Ã is just the difference between the hypermultiplets and vector

multiplets. It is easy to see the dimensions matches. There are two mass parameters for

the theory Ã and in the mirror there are two U(1) factors so we have two FI parameters

as it should be.

When we add two fundamentals, there is no adjoint in the mirror, we have two U(N)

gauge groups, see fig. 10(c). In general, when we add k fundamentals, there are k U(N)

gauge groups in the mirror.

In general, for genus g theory, when we add just one fundamental on one of the handle,

in the mirror, the central node is changed to U(N) and one of the adjoint of SU(N) is

changed to the adjoint of U(N); After doing that, there is only (g − 1)(N − 1) free U(1)s

in the “Higgs” phase of Ã. If we add another fundamental to a different handle, we simply

change one of the adjoint of SU(N) to U(N), the number of free U(1) is reduced by (N−1).

However, when we add one fundamental on each handle, there is not enough FI terms in

the mirror, what happens we believe is that there is hidden “FI” terms which appear only

in the IR. There are a total of (g − 1) hidden “FI” terms.

We can add arbitrary number of fundamentals to any of the weakly coupled gauge

group. A genus two example is shown in fig. 11.
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Figure 11: (a)A genus two theory with several fundamentals, the generalized quiver representation

is shown on the left . (b) Mirror theory of (a).

3.2 DN theory

The above analysis can be extended to DN theory. Let’s first discuss the definition of the

“good”, “bad”, “ugly” for the USp and SO gauge theory. For SO(k) gauge theory with

nf flavors, we define the excess number

e = nf − k + 1. (3.8)

The theory with e ≥ 0 is called “good”. For USp(2t) theory with nf flavors, the excess

number is defined as

e = nf − 2t− 1. (3.9)

The theory with e ≥ 0 is “good”. The above theories are called “balanced” if e = 0,

notice that the balance condition for three dimensional theory is different from the con-

formal invariant condition for the four dimensional theory. So the conventional conformal

orthosymplectic quiver is not a “good” quiver, which is different from the unitary case. In

fact, the SO nodes are “bad”.

Similarly, a quiver with alternative USp and SO nodes are called “good” quiver if

ei ≥ 0 for every node in the quiver; It is called “balanced” if ei = 0 for every node. The

global symmetry of Coulomb branch is enhanced by monopole operators for a chain of

balanced orthosymplectic quiver with P nodes, the global symmetry is in general enhanced

to SO(P + 1). However, if the first node on the chain is SO(2), the global symmetry on

the Coulomb branch of a chain with P nodes is SO(P + 2).

For the theory considered in [5], there is USp global symmetry for the A theory, but

there is no balanced orthosymplectic quiver with enhanced USp flavor symmetry, so in

general the mirror quiver is a “bad” quiver.

There are two types of internal legs for the theories considered in [5]. We add some

full “D5” branes to the internal leg and the mirror of one “D5” brane is shown in [7] using

brane splitting, we reproduce it in fig. 12.

To find the mirror theory B̃, we can not simply extend our analysis for the unitary

group case, since the mirror B is already a bad quiver. The theory B̃ should have the same
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Figure 12: (a) The addition of a “D5” brane to a USp leg, its mirror is depicted on the right; (b)

The addition of a “D5” brane to a SO leg and its mirror.

Higgs branch dimension as the theory B̃. The graph mirror has the same Higgs branch as

B̃. Now we would like to do some manipulation on the “bad” node so that the Higgs branch

dimension is not changed. Let’s consider a USp(2k) node, the Higgs branch contribution

(include all the matter attached on it) is

Nf2k − (2k2 + k) =
1

2
2k(2Nf − 2k − 1). (3.10)

For a bad quiver, we may wonder to replace its rank 2k with 2Nf−2k−1 so the contribution

to the Higgs branch is the same. We can not do this since 2Nf − 2k − 1 is a odd number.

We can try to replace 2k with

2k
′

= 2Nf − 2k − 2 = 2k + 2(Nf − 2k − 1) = 2k + 2e, (3.11)

This is similar to the unitary case. However, after doing this, the Higgs branch contribution

of this node is increased by 2e.

For the SO(Nc) gauge theory, one can do the similar calculation as above, the final

result is that if we replace the rank of the gauge group by N
′

c = Nc+2e. The Higgs branch

contribution of this node is increased by −2e.

Suppose we have a node with negative excess number e, after doing the manipulation,

the Higgs branch dimension is changed by 2e (we assume that this node is USp type, SO

type is similar), assume one of the adjacent node originally has excess number e1, its excess

number becomes e
′

1 = e1 + e. First, we should ensure that e
′

1 < 0, and we replace its rank

follows our rule, the Higgs branch dimension is changed by −2e
′

1, to cancel the change of

the USp node, we have the relation

e1 = 0. (3.12)

One may wonder we can do the manipulation on both adjacent nodes to cancel the contri-

bution, a little bit calculation shows that this is possible only in the case e1 = e2 = 0.

Our conjecture is that we only do the manipulation on those “bad” nodes one of whose

adjacent node is “balanced”. We continue this process until no nodes satisfy this condition.
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Figure 13: (a)A orthosymplectic quiver which is conformal in four dimension. (b)The graph

representation of the three dimensional theory; We indicate the Young Tableaux here. (c) The

mirror theory B. (d) We add one full “D5” brane on the internal leg on USp(2) leg. (e) The naive

mirror of the (d), we indicate the excess number for some of the relevant nodes; We can do the

rank manipulation on USp(4) node. (f) we change the USp(4) node to USp(2), and then change

the adjacent SO(5) node to SO(3), the new excess number is indicated. This is the mirror theory

B̃.

This constraint makes sense, the “bad” node on the original quiver leg does not satisfy this

condition so we do not need to do the manipulation.

Let’s also give a simple example to illustrate the idea. We take an theory A for which

we have a lagrangian description (the general case are really the same). See fig. 13 for the

details. The flavor symmetry on the Coulomb branch of the quiver in fig. 13(f) is changed

from SO(2) to SO(4), which is exactly the flavor symmetry on USp(2) node in fig. 13(a)

(original, we have two half-hypermultiplets on USp(2) node, the flavor symmetry is SO(2),

after adding two more half-hypermultiplets, the flavor symmetry is changed USp(4)).

With this construction, We can reproduce the results from [10]. In fact, we have
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constructed a large class of new mirror pairs for which the theory Ã involves strongly

coupled matter.

An important application of this “D5” brane probe is that we can read the weakly

coupled gauge group by counting the change of the dimension of the Coulomb branch of

the mirror. One subtly we should mention is that for the USp leg, we just add one “D5”

brane and count the change of the Coulomb branch dimension in the mirror. However, the

SO node is “bad”, so we need to first add one “D5” brane to make it good, and then add

another ”D5” brane to probe the rank of the gauge group. This is the only tool we know

to completely determine the generalized quiver from DN theory. One may also determines

the matter contents as we do for the unitary case.

One can also extend those consideration to the higher genus theory of the DN type.

4. Gauging U(1)

For all the theories considered in [5] and this paper, the theory A has SU(k) gauge groups

while in the mirror B, there is no fundamentals attached on any quiver node. In this

section, we will show how the mirror changes if some of the U(1) symmetry of theory A is

gauged.

The rule is quite simple, when there is a U(1) symmetry in the A theory, there is a

U(1) gauge group in the mirror. If we gauge the U(1) symmetry of A to get theory Ã,

the Higgs branch dimension of Ã is decreased by 1 while the Coulomb branch dimension

is increased by 1 comparing with A. To match this counting, we should ungauge the U(1)

node of B to get a theory B̃ whose Higgs branch is increased by 1 while the Coulomb

branch is decreased by 1 comparing with B . This is in agreement with the prediction of

mirror symmetry.

The theory Ã loses a mass parameter while B̃ loses a FI parameter; The Higgs branch

of Ã loses a U(1) global symmetry while B̃ loses a U(1) global symmetry in Coulomb

branch. Those are also in agreement with Mirror symmetry.

Consider the example in fig. 10(c), when we gauge the U(1) symmetry, the A theory

is U(N) theory an adjoint and two fundamentals, the B theory is the quiver in the right of

fig. 10(c) with the U(1) node uncaged, this is in agreement with the result in [8].

With this gauging trick, we can add some fundamentals on the central nodes (nodes

with at least three instrumentals attached on it)in the mirror. Notice that we can not add

fundamentals on the nodes on quiver tail attached to the central node.

5. General quiver tail

In the above generalizations, we do not change the boundary condition on the external

leg of the graph, so the quiver tail is the same. Our theory A is simply a chain of simple

unitary nodes coupled with fundamentals (sometimes antisymmetric matter) and strongly

coupled matter. Theory A does not have a lagrangian description in general. Our theory

B is always a standard quiver gauge theory.
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In this section, we want to change the boundary condition so that we have general

quiver tail attached to the central node. In particular, we will allow quiver tails whose

nodes can have the fundamental hypermultiplets.

To proceed, we need to reinterpret the graph representation of the theory A in terms

of N = 4 SYM on a half space. The general boundary condition of N = 4 theory can be

labeled by (ρ,H,B) [6], where ρ is the homomorphism ρ : su(2) → g, H is the commutate

of the ρ in G, B is a three dimensional theory which is coupled to H.

Consider a theory A whose graph representation only has one internal leg and four

external legs, and we assume that the weakly coupled gauge group on the internal leg

is SU(N). This theory can be interpreted as gauging two matter systems T1, T2 which

are represented by trivalent graphs . As we proved in [15], these two matter systems

must have SU(N) flavor symmetry, the gauge group is derived by gauging the diagonal

SU(N) symmetry. These two matter systems are irreducible (they have Coulomb branch

parameters with dimension N), so their 3d mirrors are “good” quivers. Consider one end

of the internal leg, the boundary condition is just (0, SU(N), T1), similar thing can be said

at the other end.

The mirror theory B can be found by first finding the mirror of the matter system

T1, T2 and then gluing them together. The mirror of the matter system is also the star-

shaped quiver with a quiver tail which is T (SU(N)) (see [7] for its definition) corresponding

to the SU(N) flavor symmetry. The result of gluing is just annihilate those two T (SU(N))

tails and we are left with only one central node, we refer this as the gluing process to get

the mirror B, which is a counterpart of gauging for the original theory A. See figure 8 in

[5].

Let’s count the Coulomb branch and Higgs dimension of the theory from gluing T1

and T2. For theory A, the Coulomb branch dimension is the sum of the Coulomb branch

of three parts (C1 + C2 + (N − 1)), where C1 and C2 is the Coulomb branch dimension

of T1 and T2. The Higgs branch dimension is the (H1 + H2 − (N2 − 1)), here H1 and

H2 is the Higgs branch dimension of T1, T2. In the mirror, before the annihilation, the

Coulomb branch dimension is simply H1+H2 by mirror symmetry. After annihilating two

T (SU(N)) legs, the Coulomb branch dimension is decreased by N2 − 1; and the Higgs

branch dimension is increased by N − 1, this agrees with theory A using mirror symmetry.

Now we can replace the theory T1 and T2 by any other “good” theories B∨ with SU(N)

flavor symmetry to form a theory Ã. As long as we know the mirror of B∨, we may find

the mirror theory B̃. If the mirror of T has a quiver tail T (SU(N)), nothing will prevent

us to find the mirror B̃ by simply annihilating the T (SU(N)). Interestingly, in [7], a large

class of those theories has been found.

Let’s give a short review of their results. Suppose we have a boundary condition

(0, SU(N), B), assume the dual boundary condition has full gauge symmetry. the dual

boundary condition is (0, SU(N), B∨) where B∨ is a SCFT living in the boundary. The

mirror B̃∨ is

B̃∨ = BSU(N)×SU(N)T (SU(N)). (5.1)
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Figure 14: (a)A linear quiver which we called theory B in the main text, it has a SU(3) symmetry

which is used to coupled to the T(SU(N)). (b)The brane construction for the quiver in (a), here

crosses represent NS5 branes, vertical dash lines represent the D5 brane, horizonal lines are D3

branes. (c) The S-dual brane configuration of (b), we have done a brane rearrangement so there is

a gauge theory interpretation. (d) The quiver representation of (c), which is the theory B∨ in the

main text.

We assume that this is a “good” quiver, so the SU(N) symmetry on the Coulomb branch

of T (SU(N)) is the SU(N) symmetry of the Higgs branch of B∨.

Now we replace one of theory T1 with theory B∨, the mirror is simply to replace two

quiver tails from T1 by B. The above consideration is quite general. Here we consider the

case where the theory B is a linear quiver, since we require the quiver in 5.1 to be good

quiver, the first node of this quiver should have rank Nc ≥ N +1. B has a NS5−D5−D3

brane constructions, we can find theory B∨ by doing S-duality on the brane systems. To

have a gauge theory interpretation, we may need to rearrange the branes, see [11, 7] for

more details. See fig. 14 for an example.

Now let’s consider a SU(3) theory coupled with two T3 theory, we replace one of T3

with the theory B∨, which we call the theory Ã, the mirror theory B̃ can be found from

our general recipe. See fig. 15 for an example.

The theory TN can play an interesting role, for each SU(N) flavor symmetry, we can

attach a general quiver tail. then the mirror is a star-shaped quiver with three general

quiver tails. In fact, using TN theory, we can construct the mirror theory with any number

of general quiver tails.

The above consideration can be extended to the case even if the quiver is “bad”, the

mirror is still given by a star-shaped quiver as we described earlier, but the gauge group

on the leg is not SU(N) but broken down to a subgroup, we can use the method in section

3 to determine the theory A.
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Figure 15: (a)A quiver with T3 factor on one end of SU(3) gauge group, on the other end, it is

coupled to the theory B∨ as depicted in fig. 12(d). (b) The mirror to theory (a), we use the quiver

B in Figure 12(a).

6. Irregular singularity

The mirror theory we considered so far are almost linear quiver with only one bi-fundamental

connecting the quiver nodes. The shape of the quiver is quite simple. In this section, we

will see more general type of quivers.

There are other four dimensional N = 2 field theories constructed from six dimen-

sional (0, 2) SCFT. In the examples discussed in [5], one consider the compactification on

Riemann surface with regular singularities, this defines a four dimensional N = 2 SCFR

[18]. However, one can also consider irregular singularities [16, 30] on the Riemann surface.

This defines a four dimensional theory A which we will study in detail elsewhere. In this

section, we will study the mirror theory for some of those theories which have already been

mentioned in [16].

The moduli space of the Hitchin equation with irregular singularity is the Coulomb

branch of the four dimensional theory on a circle with radius R. In the deep IR limit,

there is a three dimensional N = 4 SCFT which we call theory A. We want to find the

mirror theory B. In the case of regular singularities, we attach a quiver tail to each of the

singularity and then glue the common SU(N) nodes together.

The procedure for the irregular singularity case is quite similar. We need to define

a quiver to the irregular singularity. After doing this, we glue those quiver tails of the

regular singularities to the quiver associated with the irregular singularity. So the problem
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is reduced to find the quiver tail of the irregular singularity. The general story of irregular

singularity is quite complicated and we do not intend to consider the general case in this

paper. We only consider some simple cases and discuss the general theory elsewhere.

Although as simple as the theory A we consider in this paper, the mirror seems to have

some new features: more than one bi-fundamentals and exotic quiver shape. We should

mention that, in mathematics literature, the moduli space of Hitchin’s equation in complex

structure J has been given a quiver approximation [31], in physics language, we extend this

observation to the level of Hyperkahler structure, moreover, the Coulomb branch of the

quiver is identified with the Higgs branch of the theory A, which is not recognized in

mathematics literature.

6.1 A1 Theory

The SU(2) Hitchin system defined on Riemann surface (in this paper, we only consider

Riemann sphere) has only two types of irregular singularities [30, 16], we write the form of

the holomorphic Higgs field

Φ =
A

zn
+ ....

Φ =
A

zn−1/2
+ ...., (6.1)

where A is a diagonal matrix. we call them Type I and Type II singularity respectively.

When we put such a singularity on the Riemann surface, we get a four dimensional N = 2

theory A. One can add other regular singularities on the Riemann sphere. The moduli

space of Hitchin’s equation in complex structure I has the famous Hitchin’s fibration, which

is identified with the Seiberg-Witten fibration of the four dimensional theory. In particular,

the Coulomb branch dimension of four dimensional theory has half the dimension of the

Hitchin’s moduli space. The spectral curve of the Hitchin system is

det(x− Φ) = 0, (6.2)

which is just the Seiberg-Witten curve. The total dimension of Hitchin’s moduli space is

equal to the contribution of each singularity and minus the global contribution 2(dimG −

r) = 6, here G = SU(2), r is the rank of the gauge group. The local contribution of regular

singularity is 2 [16], and 2n for the irregular singularity. We only consider just one irregular

singularity on this paper(when there are more than one irregular singularities, the mirror

is not a quiver).

The mass parameter for the four dimensional theory is encoded in the residue of the

Higgs field. So for type I singularity, there is one mass parameter. However, there is no

mass parameter for type II singularity since the residue term is not allowed because of

monodromy. We want to attach a quiver with these irregular singularities. In the case

of regular singularity, the dimension of the Higgs branch of the quiver tail only accounts

for the local dimension of the singularity. In the case of irregular singularity, we should

include the global contribution to the irregular singularity: the Higgs branch of the quiver

should have dimension n − 3. The quiver should have one U(1) factor for Type I node
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Figure 16: (a) The quiver for type I irregular singularity, here n = 5. (b) The quiver for type II

irregular singularity, here n = 5, here we have adjoint matter on U(1). (c) The quiver tail for a

regular singularity. (d) We spray the SU(2) symmetry into two U(1)s.

and no U(1) factor for type II node, since the FI term for the U(1) would correspond to

the mass parameter (these are not true in general, since we have exotic IR behavior for

some theories, in these cases, one can not tell what exactly happens in the IR from the UV

theory).

With these considerations, we have the following conjecture for the quiver attached on

the irregular singularity: for the Type I singularity, we have two nodes with U(1) group,

and there are (n− 2) bifundamentals connecting them, one of the U(1) is decoupled, so we

only have one FI term; There are n − 3 mass terms for the bi-fundamentals, this means

that the original theory has n − 3 “hidden” FI terms. The origin of these ”hidden” FI

terms will be discussed elsewhere. One example is shown in fig. 16(a).

For Type II singularity, if n ≥ 5 we have only one U(1) node with n− 2 lines connect

to itself, these are the adjoints for the U(1) which are just the fundamentals. This is

exactly like the mirror for the high genus theory in the context of regular singularities [5].

There are also enhanced global symmetry in the mirror and there are extra n − 3 mass

parameters which correspond to the “hidden” FI term in the original theory A. Follow the

analogy with the higher genus theory, n = 4 corresponds to genus 1 case. In the genus

one case, the massless limit has enhanced supersymmetry, and the mirror has only one

adjoints while the massive limit has an extra U(1) node. For the irregular singularity here,

we conjecture that the mirror corresponds to the massless limit of the genus 1 case, so we

only have one adjoint, the mirror is indeed U(1) with one fundamental, we will confirm this

later. Similarly, for n = 3, there is only one U(1) node, in this case, there is no meaning to

consider this irregular singularity alone, this is only a recipe to form the mirror quiver when

there are extra regular singularities. For this class of singularities, we show one example

in fig. 16(b).

When there are other regular singularities, the quiver tail is shown in fig. 16(c). We

spray the node as in fig. 16(d). To connect the regular singularity to irregular singularity,
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Figure 17: (a)The mirror for the A2 Argyres-Douglas point, there is one Type I irregular singularity

with n = 3 and one regular singularity, we glue them together to form a quiver on the right. (b)

For A1 Argyres-Douglas point, there is a type II irregular singularity with n = 3 and a regular

singularity, after gluing them, we get a A1 affine dynkin diagram. (c) Another representation of A1

Argyres-Douglas point, only one Type I irregular singularity with n = 4 needed, the resulting quiver

is the same as representation (b). (d) For A0 Argyres-Douglas point, only one Type II singularity

with n = 4 is needed, the resulting mirror is just the A0 affine dynkin diagram.

we just gauge the U(1) node: In type I case, they are gauged separately; in type II case,

they are gauged on the same node. Since the Higgs branch of this quiver tail accounts the

local dimension of the regular singularity to the Hitchin’s moduli space even after spraying,

the Higgs branch of the whole quiver is the same as the Coulomb branch of the theory A.

We can consider some examples studied in [16]. In that paper, we claim that the

Argyres-Douglas A2 theory is derived with one Type I irregular singularity with n = 3 and

a regular singularity. The Seiberg-Witten curve as from 6.2 is

x2 = z2 + u1z + u2 +
u3

z
+

m2

z2
. (6.3)

We put the irregular singularity at z = ∞ and regular singularity at z = 0. Let’s count the

scaling dimension of the operators in the curve. The Seiberg-Witten differential is λ = xdz;

We require its dimension to be 1, together with the form of the Seiberg-Witten curve, we

have the scaling dimension of x and z:

[x] =
1

2
, [z] =

1

2
. (6.4)
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One can easily get the scaling dimension of the operators: [u1] = 1
2 , [u2] = 1, [u3] =

3
2 , [m] = 1, which is the same as the A2 Argyres-Douglas (AD) points as shown in [33].

The Coulomb branch dimension of this theory is 1, and the Higgs branch dimension is 2.

The flavor symmetry is SU(3) which is not easy to see from our six dimensional description,

since there is only manifest SU(2)×U(1) flavor symmetry. We will see below that the we

can see the enhanced symmetry from the mirror.

The mirror quiver is depicted in fig. 17(a), we show how to glue the quiver from the

regular singularity and the irregular singularity together. Let’s check that it gives the

correct mirror description: The Higgs branch dimension is 1 and Coulomb branch is 2,

which agrees with the prediction from mirror symmetry. Since the mirror quiver has a

chain of balanced quiver with two nodes (one U(1) is decoupled), the symmetry in the

Coulomb branch is SU(3) which is exactly the flavor symmetry of the A2 theory.

For A1 AD points, there are two construction: one Type II irregular singularity with

n = 3 and a regular singularity; or we can have just one Type I irregular singularity with

n = 4. For the first representation, the spectral curve is

x2 = z + u1 +
u2

z
+

m2

z2
. (6.5)

We put irregular singularity at z = ∞ and regular singularity at z = 0. The scaling

dimension is [x] = 1
3 , [z] =

2
3 . The scaling dimension of the spectrum is [u1] =

2
3 , [u2] =

4
3 , [m] = 1, which is the same as the A1 points [33].

For another representation, the spectral curve is

x2 = z4 + u1z
2 +mz3 + u2. (6.6)

We have shift the origin so z term is absent. The spectrum is [u1] =
2
3 , [m] = 1, [u2] =

4
3 ,

which is the same as the above representation.

The A1 AD point has Coulomb branch dimension 1 and Higgs branch dimension 1, the

flavor symmetry is SU(2). The 3d mirror B are the same as we can see in fig. 17(b), this

also justifies that these two descriptions are equivalent. The mirror has Coulomb branch

dimension 1 and Higgs branch dimension 1, the symmetry on the Coulomb branch is SU(2),

these are all in agreement with the mirror symmetry.

A0 theory is defined on a sphere with a Type II irregular singularity with n = 4. The

spectral curve is

x2 = z3 + u1z + u2. (6.7)

The spectrum is [u1] =
4
5 , [u2] =

6
5 , which is the same as shown in [33]. The Coulomb

branch of A0 theory is 1 and the Higgs branch is 0.

The mirror for A0 theory is shown in fig. 17(c), which is just U(1) with one fundamen-

tals. In the deep IR, it is just a twisted free hypermultiplet, so the Coulomb branch is 1,

and the Higgs branch is 0 (see e.g. [7]). In this case, the mirror symmetry does not match

the Coulomb branch to Higgs branch, but match the Coulomb branch to Coulomb branch,

this kind of phenomenon has also been observed in [34]

Notice that the mirror are just the affine dynkin diagram of the corresponding type

for the Argyres-Douglas points. The singular fibre is classified by Kodaira with type
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Figure 18: (a) A four dimensional superconformal field theory derived from six dimensional (0, 2)

theory on a sphere with one irregular singularity. (b) The mirror to theory (a).

A0, A1, A2,D4, E6, E7, E8. Four dimensional superconformal field theory with these curves

are found [32, 33, 35, 36]. The mirror theory of IR limit of the three dimensional cousin are

just given by the corresponding ADE affine dynkin diagram. Interestingly, the Coulomb

branch of these isolated SCFT in three dimensions are the ALE space of the corresponding

type.

6.2 AN−1 Theory

The classification of the irregular singularity for rank N theory is quite complicated. Here

we only consider the most simple irregular singularity.

Φ =
A

zn
+ ... (6.8)

where A is the diagonal matrix with distinct eigenvalues. The Hitchin equation with this

kind of singularity has been considered in detail in the gauge theory approach to Geometric

Langlands program [30]. The local dimension of just one singularity is

n(dimG− r) (6.9)

where r is the rank of the gauge group and G is SU(N) in the present context. The total

dimension of the Hitchin’s moduli space with just one such irregular singularity is

n(N2 −N)− 2(N2 − 1). (6.10)

So the four dimensional theory A has Coulomb branch dimension

dC =
1

2
n(N2 −N)− (N2 − 1) =

1

2
(n− 2)(N2 −N)− (N − 1). (6.11)
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There are a total of N − 1 mass parameters.

When we compactify six dimensional theory on a sphere with such a singularity, we get

a four dimensional SCFT A. The spectrum can be worked out similar as the AD points,

we will give it elsewhere, here we consider its mirror B. The mirror to this theory is quite

simple, there are N nodes with U(1) gauge groups and there are (n − 2) bi-fundamentals

connecting each pair of nodes. The Higgs branch of this quiver B is

(n− 2)
1

2
(N2 −N)− (N − 1), (6.12)

which is exactly the Coulomb branch dimension of A. See fig. 18 for an example.

7. Conclusion

In this work, we systematically study the interesting mirror symmetry for three dimensional

N = 4 theory. With these construction, we reproduce most of the mirror pairs considered

before and found a large class of new family of mirror pairs. The addition of more fun-

damentals can be used to probe the four dimensional generalized quiver gauge theory, in

fact, we can completely determine the weakly coupled gauge group and the matter contents

using 3d mirror symmetry.

In DN case, one need to consider outer automorphism to describe conventional or-

thosymplectic quiver. This automorphisms are useful to understand four dimensional S

dualities [37, 38, 39]. A2N−1 theory also has the z2 outer automorphism; We can construct

four dimensional theory with these automorphism and ask what is its 3d mirror. The

mirror should have the quiver tail with unitary groups and orthosymplectic groups. It is

interesting to work our the details.

In this paper, we discuss the mirror symmetry in the sense of the IR limit of three

dimensional theory. The mirror symmetry can be indeed extended to the finite gauge

couplings, but in this case, the mirror theory is indeed macroscopically four dimensional,

see the discussion in [11]. These extended mirror symmetry has interesting relation with

the Hyperkahler manifold [40].

Another generalization is to consider adding Chern-Simons terms and consider how

the mirror changes, See [12] in the abelian case. It would be interesting to work out the

non-abelian Chern-Simons term. It is also interesting to extend to N = 2 supersymmetric

theory [41].

The irregular singularities are very interesting, it is inevitable if we want to use

Hitchin’s equation to describe the asymptotical free theories. In A1 case, the irregular

singularities are completely classified and the Argyres-Douglas theory can be described in

this way, we work out its three dimensional mirror in this paper. We only consider some

simple examples, it is interesting to work out the general case. We hope to return to this

in the near future.

Three dimensional mirror symmetry has been checked using the localization method

[42], it is interesting to calculate the partition function of those star-shaped quiver, by this

we can learn more about four dimensional generalized quiver gauge theory.
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