42 research outputs found

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Bena, MarĂ­a Julia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Godoy BĂŒrki, Ana Carolina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de AgrobiotecnologĂ­a del Litoral. Universidad Nacional del Litoral. Instituto de AgrobiotecnologĂ­a del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BotĂĄnica Darwinion. Academia Nacional de Ciencias Exactas, FĂ­sicas y Naturales. Instituto de BotĂĄnica Darwinion; Argentin

    New genomic resources for switchgrass: a BAC library and comparative analysis of homoeologous genomic regions harboring bioenergy traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Switchgrass, a C4 species and a warm-season grass native to the prairies of North America, has been targeted for development into an herbaceous biomass fuel crop. Genetic improvement of switchgrass feedstock traits through marker-assisted breeding and biotechnology approaches calls for genomic tools development. Establishment of integrated physical and genetic maps for switchgrass will accelerate mapping of value added traits useful to breeding programs and to isolate important target genes using map based cloning. The reported polyploidy series in switchgrass ranges from diploid (2X = 18) to duodecaploid (12X = 108). Like in other large, repeat-rich plant genomes, this genomic complexity will hinder whole genome sequencing efforts. An extensive physical map providing enough information to resolve the homoeologous genomes would provide the necessary framework for accurate assembly of the switchgrass genome.</p> <p>Results</p> <p>A switchgrass BAC library constructed by partial digestion of nuclear DNA with <it>Eco</it>RI contains 147,456 clones covering the effective genome approximately 10 times based on a genome size of 3.2 Gigabases (~1.6 Gb effective). Restriction digestion and PFGE analysis of 234 randomly chosen BACs indicated that 95% of the clones contained inserts, ranging from 60 to 180 kb with an average of 120 kb. Comparative sequence analysis of two homoeologous genomic regions harboring orthologs of the rice <it>OsBRI1 </it>locus, a low-copy gene encoding a putative protein kinase and associated with biomass, revealed that orthologous clones from homoeologous chromosomes can be unambiguously distinguished from each other and correctly assembled to respective fingerprint contigs. Thus, the data obtained not only provide genomic resources for further analysis of switchgrass genome, but also improve efforts for an accurate genome sequencing strategy.</p> <p>Conclusions</p> <p>The construction of the first switchgrass BAC library and comparative analysis of homoeologous harboring <it>OsBRI1 </it>orthologs present a glimpse into the switchgrass genome structure and complexity. Data obtained demonstrate the feasibility of using HICF fingerprinting to resolve the homoeologous chromosomes of the two distinct genomes in switchgrass, providing a robust and accurate BAC-based physical platform for this species. The genomic resources and sequence data generated will lay the foundation for deciphering the switchgrass genome and lead the way for an accurate genome sequencing strategy.</p

    A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fermented dried seeds of <it>Theobroma cacao </it>(cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust <it>T. cacao </it>cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected.</p> <p>Results</p> <p>Here, we describe the construction of a BAC-based integrated genetic-physical map of the <it>T. cacao </it>cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of <it>T. cacao </it>is 374.6 Mbp. A comparative analysis with <it>A. thaliana, V. vinifera</it>, and <it>P. trichocarpa </it>suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two <it>T. cacao </it>cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed.</p> <p>Conclusions</p> <p>The results presented in this study are a stand-alone resource for functional exploitation and enhancement of <it>Theobroma cacao </it>but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the <it>T. cacao </it>genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.</p

    Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eight diverse sorghum (<it>Sorghum bicolor </it>L. Moench) accessions were subjected to short-read genome sequencing to characterize the distribution of single-nucleotide polymorphisms (SNPs). Two strategies were used for DNA library preparation. Missing SNP genotype data were imputed by local haplotype comparison. The effect of library type and genomic diversity on SNP discovery and imputation are evaluated.</p> <p>Results</p> <p>Alignment of eight genome equivalents (6 Gb) to the public reference genome revealed 283,000 SNPs at ≄82% confirmation probability. Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs in all 8 accessions, and correctly imputing 11% more missing data, than from semirandom libraries. The SNP yield advantage of the reduced-representation method was less than expected, since up to one fifth of reads started at noncanonical restriction sites and up to one third of restriction sites predicted <it>in silico </it>to yield unique alignments were not sampled at near-saturation. For imputation accuracy, the availability of a genomically similar accession in the germplasm panel was more important than panel size or sequencing coverage.</p> <p>Conclusions</p> <p>A sequence quantity of 3 million 50-base reads per accession using a <it>Bsr</it>FI library would conservatively provide satisfactory genotyping of 96,000 sorghum SNPs. For most reliable SNP-genotype imputation in shallowly sequenced genomes, germplasm panels should consist of pairs or groups of genomically similar entries. These results may help in designing strategies for economical genotyping-by-sequencing of large numbers of plant accessions.</p

    OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    No full text
    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments

    A <i>Medicago truncatula</i> Autoregulation of Nodulation Mutant Transcriptome Analysis Reveals Disruption of the SUNN Pathway Causes Constitutive Expression Changes in Some Genes, but Overall Response to Rhizobia Resembles Wild-Type, Including Induction of <i>TML1</i> and <i>TML2</i>

    No full text
    Nodule number regulation in legumes is controlled by a feedback loop that integrates nutrient and rhizobia symbiont status signals to regulate nodule development. Signals from the roots are perceived by shoot receptors, including a CLV1-like receptor-like kinase known as SUNN in Medicago truncatula. In the absence of functional SUNN, the autoregulation feedback loop is disrupted, resulting in hypernodulation. To elucidate early autoregulation mechanisms disrupted in SUNN mutants, we searched for genes with altered expression in the loss-of-function sunn-4 mutant and included the rdn1-2 autoregulation mutant for comparison. We identified constitutively altered expression of small groups of genes in sunn-4 roots and in sunn-4 shoots. All genes with verified roles in nodulation that were induced in wild-type roots during the establishment of nodules were also induced in sunn-4, including autoregulation genes TML2 and TML1. Only an isoflavone-7-O-methyltransferase gene was induced in response to rhizobia in wild-type roots but not induced in sunn-4. In shoot tissues of wild-type, eight rhizobia-responsive genes were identified, including a MYB family transcription factor gene that remained at a baseline level in sunn-4; three genes were induced by rhizobia in shoots of sunn-4 but not wild-type. We cataloged the temporal induction profiles of many small secreted peptide (MtSSP) genes in nodulating root tissues, encompassing members of twenty-four peptide families, including the CLE and IRON MAN families. The discovery that expression of TML2 in roots, a key factor in inhibiting nodulation in response to autoregulation signals, is also triggered in sunn-4 in the section of roots analyzed, suggests that the mechanism of TML regulation of nodulation in M. truncatula may be more complex than published models

    Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence

    No full text
    Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the ∌0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, ∌8% of japonica paralogs produced 5–7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while ∌70-MY-old “paleologs” resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice–sorghum divergence ∌41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity—that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5–7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization

    Identification of condition-specific regulatory mechanisms in normal and cancerous human lung tissue

    No full text
    Abstract Background Lung cancer is the leading cause of cancer death in both men and women. The most common lung cancer subtype is non-small cell lung carcinoma (NSCLC) comprising about 85% of all cases. NSCLC can be further divided into three subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell lung carcinoma. Specific genetic mutations and epigenetic aberrations play an important role in the developmental transition to a specific tumor subtype. The elucidation of normal lung versus lung tumor gene expression patterns and regulatory targets yields biomarker systems that discriminate lung phenotypes (i.e., biomarkers) and provide a foundation for the discovery of normal and aberrant gene regulatory mechanisms. Results We built condition-specific gene co-expression networks (csGCNs) for normal lung, LUAD, and LUSC conditions. Then, we integrated normal lung tissue-specific gene regulatory networks (tsGRNs) to elucidate control-target biomarker systems for normal and cancerous lung tissue. We characterized co-expressed gene edges, possibly under common regulatory control, for relevance in lung cancer. Conclusions Our approach demonstrates the ability to elucidate csGCN:tsGRN merged biomarker systems based on gene expression correlation and regulation. The biomarker systems we describe can be used to classify and further describe lung specimens. Our approach is generalizable and can be used to discover and interpret complex gene expression patterns for any condition or species

    Additional file 1 of Identification of condition-specific regulatory mechanisms in normal and cancerous human lung tissue

    No full text
    Additional file 1: Table S1. Unified Lung Gene Co-expression Network. Table S2. GTEx Lung Gene Regulatory Network. Table S3. LUAD and LUSC Specific GRN Edge Attributes. Table S4. All Triangle Edges Information for LUAD and LUSC Specific Nodes in Combined Networks. Table S5. Pathway Information for LUAD and LUSC Specific Nodes in Combined Networks
    corecore